Wedler, Mathies und Stender, Merten und Klein, Marco und Hoffmann, Norbert (2023) Machine learning simulation of one-dimensional deterministic water wave propagation. Ocean Engineering (284), Seite 115222. Elsevier. doi: 10.1016/j.oceaneng.2023.115222. ISSN 0029-8018.
PDF
- Nur DLR-intern zugänglich
- Verlagsversion (veröffentlichte Fassung)
19MB |
Offizielle URL: https://www.sciencedirect.com/science/article/pii/S0029801823016062
Kurzfassung
Deterministic phase-resolved prediction of the evolution of surface gravity waves in water is challenging due to their complex spatio-temporal dynamics. Physics-based methods of varying complexity are available, but the conflicting objectives of numerical efficiency and accuracy impede real-time wave prediction. Data-driven methods may be able to overcome this challenge by using training data generated by complex numerical methods. This work explores the potential of a machine learning (ML) approach based on a fully convolutional encoder–decoder architecture for the efficient and accurate prediction of water waves. The high-order spectral (HOS) method forms the foundation for the generation of the training data. The HOS method is applied for different, consecutive orders of nonlinearity starting from first order up to fourth order. The JONSWAP wave energy spectrum serves as the basis for modeling the one-dimensional irregular sea states. The overall objective of this work is to evaluate whether the complex non-linear physical processes can be identified and learned by the ML approach. The trained ML flow mapper is used to perform time integration of an initial sea state. The results indicate that the proposed ML approach is able to reproduce the distinctive physical processes of the different orders of nonlinearities. It is shown that the ML approach enables fast and accurate predictions of one-dimensional waves over a time horizon that spans multiple peak periods.
elib-URL des Eintrags: | https://elib.dlr.de/195911/ | ||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Dokumentart: | Zeitschriftenbeitrag | ||||||||||||||||||||
Titel: | Machine learning simulation of one-dimensional deterministic water wave propagation | ||||||||||||||||||||
Autoren: |
| ||||||||||||||||||||
Datum: | 6 Juni 2023 | ||||||||||||||||||||
Erschienen in: | Ocean Engineering | ||||||||||||||||||||
Referierte Publikation: | Ja | ||||||||||||||||||||
Open Access: | Nein | ||||||||||||||||||||
Gold Open Access: | Nein | ||||||||||||||||||||
In SCOPUS: | Ja | ||||||||||||||||||||
In ISI Web of Science: | Ja | ||||||||||||||||||||
DOI: | 10.1016/j.oceaneng.2023.115222 | ||||||||||||||||||||
Seitenbereich: | Seite 115222 | ||||||||||||||||||||
Verlag: | Elsevier | ||||||||||||||||||||
ISSN: | 0029-8018 | ||||||||||||||||||||
Status: | veröffentlicht | ||||||||||||||||||||
Stichwörter: | Deterministic phase-resolved wave prediction; Machine learning; Surrogate modeling; Auto-regressive time stepping; Nonlinear wave dynamics | ||||||||||||||||||||
HGF - Forschungsbereich: | Energie | ||||||||||||||||||||
HGF - Programm: | Energiesystemdesign | ||||||||||||||||||||
HGF - Programmthema: | Energiesystemtransformation | ||||||||||||||||||||
DLR - Schwerpunkt: | Energie | ||||||||||||||||||||
DLR - Forschungsgebiet: | E SY - Energiesystemtechnologie und -analyse | ||||||||||||||||||||
DLR - Teilgebiet (Projekt, Vorhaben): | E - Systemanalyse und Technologiebewertung | ||||||||||||||||||||
Standort: | Geesthacht | ||||||||||||||||||||
Institute & Einrichtungen: | Institut für Maritime Energiesysteme | ||||||||||||||||||||
Hinterlegt von: | Klein, Marco | ||||||||||||||||||||
Hinterlegt am: | 17 Jul 2023 07:26 | ||||||||||||||||||||
Letzte Änderung: | 17 Jul 2023 07:26 |
Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags