Solano Carrillo, Edgardo (2023) Can a Single Neuron Learn Predictive Uncertainty? International Journal of Uncertainty, Fuzziness and Knowledge-Based Systems, 31 (3), Seiten 471-496. World Scientific. doi: 10.1142/S021848852350023X. ISSN 0218-4885.
PDF
- Preprintversion (eingereichte Entwurfsversion)
1MB |
Offizielle URL: https://www.worldscientific.com/doi/epdf/10.1142/S021848852350023X
Kurzfassung
Uncertainty estimation methods using deep learning approaches strive against separating how uncertain the state of the world manifests to us via measurement (objective end) from the way this gets scrambled with the model specification and training procedure used to predict such state (subjective means) — e.g., number of neurons, depth, connections, priors (if the model is bayesian), weight initialization, etc. This poses the question of the extent to which one can eliminate the degrees of freedom associated with these specifications and still being able to capture the objective end. Here, a novel nonparametric quantile estimation method for continuous random variables is introduced, based on the simplest neural network architecture with one degree of freedom: a single neuron. Its advantage is first shown in synthetic experiments comparing with the quantile estimation achieved from ranking the order statistics (specifically for small sample size) and with quantile regression. In real-world applications, the method can be used to quantify predictive uncertainty under the split conformal prediction setting, whereby prediction intervals are estimated from the residuals of a pre-trained model on a heldout validation set and then used to quantify the uncertainty in future predictions — the single neuron used here as a structureless “thermometer” that measures how uncertain the pre-trained model is. Benchmarking regression and classification experiments demonstrate that the method is competitive in quality and coverage with state-of-the-art solutions, with the added benefit of being more computationally efficient.
elib-URL des Eintrags: | https://elib.dlr.de/195849/ | ||||||||
---|---|---|---|---|---|---|---|---|---|
Dokumentart: | Zeitschriftenbeitrag | ||||||||
Titel: | Can a Single Neuron Learn Predictive Uncertainty? | ||||||||
Autoren: |
| ||||||||
Datum: | Juni 2023 | ||||||||
Erschienen in: | International Journal of Uncertainty, Fuzziness and Knowledge-Based Systems | ||||||||
Referierte Publikation: | Ja | ||||||||
Open Access: | Ja | ||||||||
Gold Open Access: | Nein | ||||||||
In SCOPUS: | Ja | ||||||||
In ISI Web of Science: | Ja | ||||||||
Band: | 31 | ||||||||
DOI: | 10.1142/S021848852350023X | ||||||||
Seitenbereich: | Seiten 471-496 | ||||||||
Verlag: | World Scientific | ||||||||
ISSN: | 0218-4885 | ||||||||
Status: | veröffentlicht | ||||||||
Stichwörter: | Uncertainty in AI; explainable AI; non-parametric quantile estimation; order statistics; split conformal predictions | ||||||||
HGF - Forschungsbereich: | keine Zuordnung | ||||||||
HGF - Programm: | keine Zuordnung | ||||||||
HGF - Programmthema: | keine Zuordnung | ||||||||
DLR - Schwerpunkt: | keine Zuordnung | ||||||||
DLR - Forschungsgebiet: | keine Zuordnung | ||||||||
DLR - Teilgebiet (Projekt, Vorhaben): | keine Zuordnung | ||||||||
Standort: | Bremerhaven | ||||||||
Institute & Einrichtungen: | Institut für den Schutz maritimer Infrastrukturen > Maritime Sicherheitstechnologien | ||||||||
Hinterlegt von: | Solano Carrillo, Edgardo | ||||||||
Hinterlegt am: | 03 Aug 2023 15:08 | ||||||||
Letzte Änderung: | 19 Okt 2023 09:56 |
Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags