Baumeister, Philipp und Tosi, Nicola und Brachmann, Caroline und Grenfell, John Lee und Noack, Lena (2023) Redox state and interior structure control on the long-term habitability of stagnant-lid planets. Astronomy & Astrophysics. EDP Sciences. doi: 10.1051/0004-6361/202245791. ISSN 0004-6361. (im Druck)
Dieses Archiv kann nicht den Volltext zur Verfügung stellen.
Offizielle URL: https://dx.doi.org/10.1051/0004-6361/202245791
Kurzfassung
Context. A major goal in the search for extraterrestrial life is the detection of liquid water on the surface of exoplanets. On terrestrial planets, volcanic outgassing is a significant source of atmospheric and surface water and a major contributor to the long-term evolution of the atmosphere. The rate of volcanism depends on the interior evolution and on numerous feedback processes between the atmosphere and interior, which continuously shape atmospheric composition, pressure, and temperature. Aims. We explore how key planetary parameters, such as planet mass, interior structure, mantle water content, and redox state, shape the formation of atmospheres that permit liquid water on the surface of planets. Methods. We present the results of a comprehensive 1D model of the coupled evolution of the interior and atmosphere of rocky exoplanets that combines central feedback processes between these two reservoirs. We carried out more than 280000 simulations over a wide range of mantle redox states and volatile content, planetary masses, interior structures, and orbital distances in order to robustly assess the emergence, accumulation, and preservation of surface water on rocky planets. To establish a conservative baseline of which types of planets can outgas and sustain water on their surface, we focus here on stagnant-lid planets. Results. We find that only a narrow range of the mantle redox state around the iron-wüstite buffer allows the formation of atmospheres that lead to long-term habitable conditions. At oxidizing conditions similar to those of the Earth's mantle, most stagnant-lid planets end up in a hothouse regime akin to Venus due to strong CO2 outgassing. At more reducing conditions, the amount of outgassed greenhouse gases is often too low to keep surface water from freezing. In addition, Mercury-like planets with large metallic cores are able to sustain habitable conditions at an extended range of orbital distances as a result of lower volcanic activity.
elib-URL des Eintrags: | https://elib.dlr.de/195684/ | ||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Dokumentart: | Zeitschriftenbeitrag | ||||||||||||||||||||||||
Zusätzliche Informationen: | Bisher nur online erschienen. | ||||||||||||||||||||||||
Titel: | Redox state and interior structure control on the long-term habitability of stagnant-lid planets | ||||||||||||||||||||||||
Autoren: |
| ||||||||||||||||||||||||
Datum: | 7 Juni 2023 | ||||||||||||||||||||||||
Erschienen in: | Astronomy & Astrophysics | ||||||||||||||||||||||||
Referierte Publikation: | Ja | ||||||||||||||||||||||||
Open Access: | Ja | ||||||||||||||||||||||||
Gold Open Access: | Nein | ||||||||||||||||||||||||
In SCOPUS: | Ja | ||||||||||||||||||||||||
In ISI Web of Science: | Ja | ||||||||||||||||||||||||
DOI: | 10.1051/0004-6361/202245791 | ||||||||||||||||||||||||
Verlag: | EDP Sciences | ||||||||||||||||||||||||
ISSN: | 0004-6361 | ||||||||||||||||||||||||
Status: | im Druck | ||||||||||||||||||||||||
Stichwörter: | terrestrial planets, planet evolution, planet interiors, atmospheres, oceans, numerical methods, outgassing, Venus, exoplanets, habitability | ||||||||||||||||||||||||
HGF - Forschungsbereich: | Luftfahrt, Raumfahrt und Verkehr | ||||||||||||||||||||||||
HGF - Programm: | Raumfahrt | ||||||||||||||||||||||||
HGF - Programmthema: | Robotik | ||||||||||||||||||||||||
DLR - Schwerpunkt: | Raumfahrt | ||||||||||||||||||||||||
DLR - Forschungsgebiet: | R RO - Robotik | ||||||||||||||||||||||||
DLR - Teilgebiet (Projekt, Vorhaben): | R - Planetare Exploration, R - Planetary Evolution and Life | ||||||||||||||||||||||||
Standort: | Berlin-Adlershof | ||||||||||||||||||||||||
Institute & Einrichtungen: | Institut für Planetenforschung > Planetenphysik Institut für Planetenforschung > Extrasolare Planeten und Atmosphären | ||||||||||||||||||||||||
Hinterlegt von: | Baumeister, Philipp | ||||||||||||||||||||||||
Hinterlegt am: | 27 Jun 2023 13:24 | ||||||||||||||||||||||||
Letzte Änderung: | 26 Mär 2024 14:33 |
Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags