elib
DLR-Header
DLR-Logo -> http://www.dlr.de
DLR Portal Home | Impressum | Datenschutz | Kontakt | English
Schriftgröße: [-] Text [+]

Neural Networks as a Surrogate Model for Linear Stability Analysis of Three-Dimensional Compressible Boundary Layers

Hoffmann, J. Paul und Theiß, Alexander und Hein, Stefan (2023) Neural Networks as a Surrogate Model for Linear Stability Analysis of Three-Dimensional Compressible Boundary Layers. In: Advances in Artificial Intelligence for Aerospace Engineering 2023. Advances in Artificial Intelligence for Aerospace Engineering, 2023-05-30, Paris, Frankreich.

[img] PDF - Nur DLR-intern zugänglich
367kB

Kurzfassung

In 2021, the European Union adopted measures in its European Green Deal to reach the target of carbon neutrality by 2050. As an intermediate milestone for 2030, it aims for a reduction of greenhouse gas emissions by at least 55% compared to levels of 1990. The need to reduce emissions is also felt in aviation. One of the most impactful factors is the reduction of viscous drag, which itself is heavily influenced by the boundary-layer state. A crucial design parameter in this context is the position of laminar-turbulent transition. In order to assess the transition location, the semi-empirical e^N-method is commonly used, which relies on stability characteristics of the laminar boundary layer computed based on the linear stability theory (LST). Transition is predicted, where the integrated growth rate of disturbances modes, the N-factor, reaches an experimentally derived critical limit. However, the transition prediction based on LST is so far mostly used by expert users only. To open the accessibility of this method to a broader user spectrum and to profit from enhanced performance, different strategies to construct an according surrogate model, such as lookup tables, have been proposed in the past. After having proven their strong potential in different branches and fields of application, artificial neural networks (ANN) have lately gained again attention as a suitable candidate for surrogate models for boundary-layer stability predictions. In the present work, an ANNbased approach for surrogate modelling of LST-based stability computation is presented for threedimensional compressible boundary layers. Within the scope of this work, two different instability mechanisms, two-dimensional (2D) Tollmien-Schlichting waves (TS) and stationary cross-flow instability (CFI), are covered.

elib-URL des Eintrags:https://elib.dlr.de/195541/
Dokumentart:Konferenzbeitrag (Vortrag)
Titel:Neural Networks as a Surrogate Model for Linear Stability Analysis of Three-Dimensional Compressible Boundary Layers
Autoren:
AutorenInstitution oder E-Mail-AdresseAutoren-ORCID-iDORCID Put Code
Hoffmann, J. Paulpaul.hoffmann (at) dlr.deNICHT SPEZIFIZIERTNICHT SPEZIFIZIERT
Theiß, AlexanderAlexander.Theiss (at) dlr.deNICHT SPEZIFIZIERTNICHT SPEZIFIZIERT
Hein, StefanStefan.Hein (at) dlr.deNICHT SPEZIFIZIERTNICHT SPEZIFIZIERT
Datum:30 Mai 2023
Erschienen in:Advances in Artificial Intelligence for Aerospace Engineering 2023
Referierte Publikation:Nein
Open Access:Nein
Gold Open Access:Nein
In SCOPUS:Nein
In ISI Web of Science:Nein
Status:veröffentlicht
Stichwörter:neural network, Neurale Netze, surrogate model, Ersatzmodell, stability analysis, Stabilitätsanalyse, boundary layer, Grenzschicht, Transition, LST
Veranstaltungstitel:Advances in Artificial Intelligence for Aerospace Engineering
Veranstaltungsort:Paris, Frankreich
Veranstaltungsart:Workshop
Veranstaltungsdatum:30 Mai 2023
Veranstalter :ONERA & DLR
HGF - Forschungsbereich:Luftfahrt, Raumfahrt und Verkehr
HGF - Programm:Luftfahrt
HGF - Programmthema:Effizientes Luftfahrzeug
DLR - Schwerpunkt:Luftfahrt
DLR - Forschungsgebiet:L EV - Effizientes Luftfahrzeug
DLR - Teilgebiet (Projekt, Vorhaben):L - Flugzeugtechnologien und Integration
Standort: Göttingen
Institute & Einrichtungen:Institut für Aerodynamik und Strömungstechnik > Hochgeschwindigkeitskonfigurationen, GO
Hinterlegt von: Hoffmann, Paul
Hinterlegt am:05 Sep 2023 23:57
Letzte Änderung:24 Apr 2024 20:56

Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags

Blättern
Suchen
Hilfe & Kontakt
Informationen
electronic library verwendet EPrints 3.3.12
Gestaltung Webseite und Datenbank: Copyright © Deutsches Zentrum für Luft- und Raumfahrt (DLR). Alle Rechte vorbehalten.