Wang, Zhiyuan und Marconcini, Mattia und Nguyen, Hoang Khanh Linh und Pham, Tung Gia und Bachofer, Felix (2023) Settlement Growth Prediction exploiting EO-based Time Series with the Spatio-Temporal Matrix Approach: a Case Study for the City of Hue, Vietnam. In: 2023 Joint Urban Remote Sensing Event, JURSE 2023, Seiten 1-4. IEEE xplore. 2023 Joint Urban Remote Sensing Event (JURSE), 2023-05-17 - 2023-05-19, Heraklion, Greece. doi: 10.1109/JURSE57346.2023.10144086. ISBN 978-166549373-4. ISSN 2642-9535.
|
PDF
- Nur DLR-intern zugänglich
1MB |
Kurzfassung
Satellite-based Earth observation (EO) time series data possess enormous potential for analyzing the past and forecasting future trends of urban/settlement development. While historic settlement extent maps with high spatial resolution can be generated from EO data, detailed local information such as intra-urban recreation spaces or restricted areas for specific land use types are hard to acquire. In order to overcome this data gap from which many modelling approaches suffer, the Spatio-Temporal Matrix (STM) was developed. The STM provides spatial and temporal characteristics of a target pixels’ neighborhood to be used for predicting the future urban/settlement growth with a machine learning approach. In this study, a multi-layer perceptron (MLP) was employed to utilize the STM for the settlement growth prediction of the City of Hue, Vietnam. The SLEUTH model was used as a benchmark for the performance evaluation. The results show that the STM-based model achieved a high accuracy in settlement growth modelling. Compared to the SLEUTH model, the STM approach simulated less growth in restricted areas without having to rely on external datasets.
| elib-URL des Eintrags: | https://elib.dlr.de/195454/ | ||||||||||||||||||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Dokumentart: | Konferenzbeitrag (Vortrag) | ||||||||||||||||||||||||
| Titel: | Settlement Growth Prediction exploiting EO-based Time Series with the Spatio-Temporal Matrix Approach: a Case Study for the City of Hue, Vietnam | ||||||||||||||||||||||||
| Autoren: |
| ||||||||||||||||||||||||
| Datum: | 2023 | ||||||||||||||||||||||||
| Erschienen in: | 2023 Joint Urban Remote Sensing Event, JURSE 2023 | ||||||||||||||||||||||||
| Referierte Publikation: | Ja | ||||||||||||||||||||||||
| Open Access: | Nein | ||||||||||||||||||||||||
| Gold Open Access: | Nein | ||||||||||||||||||||||||
| In SCOPUS: | Ja | ||||||||||||||||||||||||
| In ISI Web of Science: | Nein | ||||||||||||||||||||||||
| DOI: | 10.1109/JURSE57346.2023.10144086 | ||||||||||||||||||||||||
| Seitenbereich: | Seiten 1-4 | ||||||||||||||||||||||||
| Verlag: | IEEE xplore | ||||||||||||||||||||||||
| ISSN: | 2642-9535 | ||||||||||||||||||||||||
| ISBN: | 978-166549373-4 | ||||||||||||||||||||||||
| Status: | veröffentlicht | ||||||||||||||||||||||||
| Stichwörter: | urban, settlement growth, modelling | ||||||||||||||||||||||||
| Veranstaltungstitel: | 2023 Joint Urban Remote Sensing Event (JURSE) | ||||||||||||||||||||||||
| Veranstaltungsort: | Heraklion, Greece | ||||||||||||||||||||||||
| Veranstaltungsart: | internationale Konferenz | ||||||||||||||||||||||||
| Veranstaltungsbeginn: | 17 Mai 2023 | ||||||||||||||||||||||||
| Veranstaltungsende: | 19 Mai 2023 | ||||||||||||||||||||||||
| HGF - Forschungsbereich: | Luftfahrt, Raumfahrt und Verkehr | ||||||||||||||||||||||||
| HGF - Programm: | Raumfahrt | ||||||||||||||||||||||||
| HGF - Programmthema: | Erdbeobachtung | ||||||||||||||||||||||||
| DLR - Schwerpunkt: | Raumfahrt | ||||||||||||||||||||||||
| DLR - Forschungsgebiet: | R EO - Erdbeobachtung | ||||||||||||||||||||||||
| DLR - Teilgebiet (Projekt, Vorhaben): | R - Fernerkundung u. Geoforschung | ||||||||||||||||||||||||
| Standort: | Oberpfaffenhofen | ||||||||||||||||||||||||
| Institute & Einrichtungen: | Deutsches Fernerkundungsdatenzentrum > Dynamik der Landoberfläche | ||||||||||||||||||||||||
| Hinterlegt von: | Bachofer, Dr. Felix | ||||||||||||||||||||||||
| Hinterlegt am: | 31 Jul 2023 12:54 | ||||||||||||||||||||||||
| Letzte Änderung: | 24 Apr 2024 20:55 |
Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags