elib
DLR-Header
DLR-Logo -> http://www.dlr.de
DLR Portal Home | Impressum | Datenschutz | Kontakt | English
Schriftgröße: [-] Text [+]

Deep Learning Based Non-Intrusive Load Monitoring for a Three-Phase System

GOWRIENANTHAN, B. und KIRUTHIHAN, N. und RATHNAYAKE, K. D. I. S. und KIRUTHIKAN, S. und LOGEESHAN, V. und KUMARAWADU, S. und Rajakaruna Wanigasekara, Chathura (2023) Deep Learning Based Non-Intrusive Load Monitoring for a Three-Phase System. IEEE Access, 11. IEEE - Institute of Electrical and Electronics Engineers. doi: 10.1109/ACCESS.2023.3276475. ISSN 2169-3536.

[img] PDF - Verlagsversion (veröffentlichte Fassung)
1MB

Offizielle URL: https://ieeexplore.ieee.org/document/10124772

Kurzfassung

Non-Intrusive Load Monitoring (NILM) is a method to determine the power consumption of individual appliances from the overall power consumption measured by a single measurement device, which is usually the main meter. Increase in the adoption of smart meters has facilitated large scale implementation of NILM, which can provide information about individual loads to the utilities and consumers. This will lead to significant energy savings as well as better demand-side management. Researchers have proposed several methods and have successfully implemented NILM for residential sectors that have a single-phase supply. However, NILM has not been successfully implemented for industrial and commercial buildings that have a three-phase supply, due to several challenges. These buildings consume significant amount of power and implementing NILM to these buildings has the potential to yield substantial benefits. In this paper, we propose a novel deep learning-based approach to address some of the key challenges in implementing NILM for buildings that have a three-phase supply. Our approach introduces an ensemble learning technique that does not require training of multiple neural network models, which reduces the computational requirements and makes it economically feasible. The model was tested on a three-phase system that consists of both three- phase loads and single-phase loads. The results show significant improvement in load disaggregation compared to the existing methods and indicate its applicability.

elib-URL des Eintrags:https://elib.dlr.de/195329/
Dokumentart:Zeitschriftenbeitrag
Titel:Deep Learning Based Non-Intrusive Load Monitoring for a Three-Phase System
Autoren:
AutorenInstitution oder E-Mail-AdresseAutoren-ORCID-iDORCID Put Code
GOWRIENANTHAN, B.University of MoratuwaNICHT SPEZIFIZIERTNICHT SPEZIFIZIERT
KIRUTHIHAN, N.University of MoratuwaNICHT SPEZIFIZIERTNICHT SPEZIFIZIERT
RATHNAYAKE, K. D. I. S.University of MoratuwaNICHT SPEZIFIZIERTNICHT SPEZIFIZIERT
KIRUTHIKAN, S.University of MoratuwaNICHT SPEZIFIZIERTNICHT SPEZIFIZIERT
LOGEESHAN, V.University of MoratuwaNICHT SPEZIFIZIERTNICHT SPEZIFIZIERT
KUMARAWADU, S.University of MoratuwaNICHT SPEZIFIZIERTNICHT SPEZIFIZIERT
Rajakaruna Wanigasekara, ChathuraChathura.Wanigasekara (at) dlr.dehttps://orcid.org/0000-0003-4371-6108137404629
Datum:24 Mai 2023
Erschienen in:IEEE Access
Referierte Publikation:Ja
Open Access:Ja
Gold Open Access:Ja
In SCOPUS:Ja
In ISI Web of Science:Ja
Band:11
DOI:10.1109/ACCESS.2023.3276475
Verlag:IEEE - Institute of Electrical and Electronics Engineers
ISSN:2169-3536
Status:veröffentlicht
Stichwörter:NILM neural networks deep learning ensemble learning load disaggregation
HGF - Forschungsbereich:keine Zuordnung
HGF - Programm:keine Zuordnung
HGF - Programmthema:keine Zuordnung
DLR - Schwerpunkt:keine Zuordnung
DLR - Forschungsgebiet:keine Zuordnung
DLR - Teilgebiet (Projekt, Vorhaben):keine Zuordnung
Standort: Bremerhaven
Institute & Einrichtungen:Institut für den Schutz maritimer Infrastrukturen > Resilienz Maritimer Systeme
Hinterlegt von: Rajakaruna Wanigasekara, Chathura
Hinterlegt am:23 Jun 2023 10:56
Letzte Änderung:23 Jun 2023 10:56

Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags

Blättern
Suchen
Hilfe & Kontakt
Informationen
electronic library verwendet EPrints 3.3.12
Gestaltung Webseite und Datenbank: Copyright © Deutsches Zentrum für Luft- und Raumfahrt (DLR). Alle Rechte vorbehalten.