Schuegraf, Philipp und Schnell, Julian und Henry, Corentin und Bittner, Ksenia (2022) Building Section Instance Segmentation with Combined Classical and Deep Learning Methods. In: ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences (2), Seiten 407-414. Copernicus Publications. ISPRS Congress 2022, 2022-06-06 - 2022-06-11, Nice, France. doi: 10.5194/isprs-annals-V-2-2022-407-2022. ISSN 2194-9042.
PDF
26MB |
Offizielle URL: https://isprs-annals.copernicus.org/articles/V-2-2022/407/2022/
Kurzfassung
In big cities, the complexity of urban infrastructure is very high. In city centers, one construction can consist of several building sections of different heights or roof geometries. Most of the existing approaches detect those buildings as a single construction in the form of binary building segmentation maps or as one instance of object-oriented segmentation. However, reconstructing complex buildings consisting of several parts requires a higher level of detail. In this work, we present a methodology for individual building section instance segmentation on satellite imagery. We show that fully convolutional networks (FCNs) can tackle the issue much better than the state-of-the-art Mask-RCNN. A ground truth raster image with pixel value 1 for building sections and 2 for their touching borders was generated to train models on predicting both classes as a semantic output. The semantic outputs were then post-processed with the help of morphology and watershed labeling to generate segmentation on the instance level. The combination of a deep learning-based approach and a classical image processing algorithm allowed us to fulfill the segmentation task on the instance level and reach high-quality results with an mAP of up to 42 %.
elib-URL des Eintrags: | https://elib.dlr.de/195012/ | ||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Dokumentart: | Konferenzbeitrag (Vortrag) | ||||||||||||||||||||
Titel: | Building Section Instance Segmentation with Combined Classical and Deep Learning Methods | ||||||||||||||||||||
Autoren: |
| ||||||||||||||||||||
Datum: | Mai 2022 | ||||||||||||||||||||
Erschienen in: | ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences | ||||||||||||||||||||
Referierte Publikation: | Ja | ||||||||||||||||||||
Open Access: | Ja | ||||||||||||||||||||
Gold Open Access: | Nein | ||||||||||||||||||||
In SCOPUS: | Ja | ||||||||||||||||||||
In ISI Web of Science: | Ja | ||||||||||||||||||||
DOI: | 10.5194/isprs-annals-V-2-2022-407-2022 | ||||||||||||||||||||
Seitenbereich: | Seiten 407-414 | ||||||||||||||||||||
Verlag: | Copernicus Publications | ||||||||||||||||||||
ISSN: | 2194-9042 | ||||||||||||||||||||
Status: | veröffentlicht | ||||||||||||||||||||
Stichwörter: | Building instance segmentation, high-resolution satellite imagery, WorldView-4, deep learning, watershed labeling, semantic segmentation, AI4BuildingModeling | ||||||||||||||||||||
Veranstaltungstitel: | ISPRS Congress 2022 | ||||||||||||||||||||
Veranstaltungsort: | Nice, France | ||||||||||||||||||||
Veranstaltungsart: | internationale Konferenz | ||||||||||||||||||||
Veranstaltungsbeginn: | 6 Juni 2022 | ||||||||||||||||||||
Veranstaltungsende: | 11 Juni 2022 | ||||||||||||||||||||
HGF - Forschungsbereich: | Luftfahrt, Raumfahrt und Verkehr | ||||||||||||||||||||
HGF - Programm: | Raumfahrt | ||||||||||||||||||||
HGF - Programmthema: | Erdbeobachtung | ||||||||||||||||||||
DLR - Schwerpunkt: | Raumfahrt | ||||||||||||||||||||
DLR - Forschungsgebiet: | R EO - Erdbeobachtung | ||||||||||||||||||||
DLR - Teilgebiet (Projekt, Vorhaben): | R - Optische Fernerkundung, D - Digitaler Atlas 2.0, V - V&V4NGC - Methoden, Prozesse und Werkzeugketten für die Validierung & Verifikation von NGC | ||||||||||||||||||||
Standort: | Oberpfaffenhofen | ||||||||||||||||||||
Institute & Einrichtungen: | Institut für Methodik der Fernerkundung > Photogrammetrie und Bildanalyse | ||||||||||||||||||||
Hinterlegt von: | Schuegraf, Philipp | ||||||||||||||||||||
Hinterlegt am: | 11 Mai 2023 12:15 | ||||||||||||||||||||
Letzte Änderung: | 28 Mai 2024 10:34 |
Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags