Xie, Yuxing und Tian, Jiaojiao (2023) Multimodal Co-learning: A Domain Adaptation Method for Building Extraction from Optical Remote Sensing Imagery. In: 2023 Joint Urban Remote Sensing Event, JURSE 2023, Seiten 1-4. IEEE. 2023 Joint Urban Remote Sensing Event (JURSE), 2023-05-17 - 2023-05-19, Heraklion, Greece. doi: 10.1109/JURSE57346.2023.10144187. ISBN 978-166549373-4. ISSN 2642-9535.
PDF
662kB |
Offizielle URL: https://ieeexplore.ieee.org/abstract/document/10144187
Kurzfassung
In this paper, we aim to improve the transfer learning ability of 2D convolutional neural networks (CNNs) for building extraction from optical imagery and digital surface models (DSMs) using a 2D-3D co-learning framework. Unlabeled target domain data are incorporated as unlabeled training data pairs to optimize the training procedure. Our framework adaptively transfers unsupervised mutual information between the 2D and 3D modality (i.e., DSM-derived point clouds) during the training phase via a soft connection, utilizing a predefined loss function. Experimental results from a spaceborne-to-airborne cross-domain case demonstrate that the framework we present can quantitatively and qualitatively improve the testing results for building extraction from single-modality optical images.
elib-URL des Eintrags: | https://elib.dlr.de/194994/ | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Dokumentart: | Konferenzbeitrag (Vortrag) | ||||||||||||
Titel: | Multimodal Co-learning: A Domain Adaptation Method for Building Extraction from Optical Remote Sensing Imagery | ||||||||||||
Autoren: |
| ||||||||||||
Datum: | 8 Juni 2023 | ||||||||||||
Erschienen in: | 2023 Joint Urban Remote Sensing Event, JURSE 2023 | ||||||||||||
Referierte Publikation: | Ja | ||||||||||||
Open Access: | Ja | ||||||||||||
Gold Open Access: | Nein | ||||||||||||
In SCOPUS: | Ja | ||||||||||||
In ISI Web of Science: | Nein | ||||||||||||
DOI: | 10.1109/JURSE57346.2023.10144187 | ||||||||||||
Seitenbereich: | Seiten 1-4 | ||||||||||||
Verlag: | IEEE | ||||||||||||
ISSN: | 2642-9535 | ||||||||||||
ISBN: | 978-166549373-4 | ||||||||||||
Status: | veröffentlicht | ||||||||||||
Stichwörter: | building extraction, multimodal data, co-learning, domain adaptation, transfer learning | ||||||||||||
Veranstaltungstitel: | 2023 Joint Urban Remote Sensing Event (JURSE) | ||||||||||||
Veranstaltungsort: | Heraklion, Greece | ||||||||||||
Veranstaltungsart: | internationale Konferenz | ||||||||||||
Veranstaltungsbeginn: | 17 Mai 2023 | ||||||||||||
Veranstaltungsende: | 19 Mai 2023 | ||||||||||||
HGF - Forschungsbereich: | Luftfahrt, Raumfahrt und Verkehr | ||||||||||||
HGF - Programm: | Raumfahrt | ||||||||||||
HGF - Programmthema: | Erdbeobachtung | ||||||||||||
DLR - Schwerpunkt: | Raumfahrt | ||||||||||||
DLR - Forschungsgebiet: | R EO - Erdbeobachtung | ||||||||||||
DLR - Teilgebiet (Projekt, Vorhaben): | R - Optische Fernerkundung, R - Künstliche Intelligenz | ||||||||||||
Standort: | Oberpfaffenhofen | ||||||||||||
Institute & Einrichtungen: | Institut für Methodik der Fernerkundung > Photogrammetrie und Bildanalyse | ||||||||||||
Hinterlegt von: | Xie, Yuxing | ||||||||||||
Hinterlegt am: | 15 Jun 2023 14:02 | ||||||||||||
Letzte Änderung: | 24 Apr 2024 20:55 |
Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags