elib
DLR-Header
DLR-Logo -> http://www.dlr.de
DLR Portal Home | Impressum | Datenschutz | Kontakt | English
Schriftgröße: [-] Text [+]

Identification of Airspaces With Increased Coordination Effort Based on Radar Data

Holzenkamp, Sören und Jung, Martin (2023) Identification of Airspaces With Increased Coordination Effort Based on Radar Data. In: Human Interaction and Emerging Technologies (IHIET 2023): Artificial Intelligence and Future Applications, 70 (9), Seiten 272-278. AHFE Open Access. Human Interaction & Emerging Technologies: Artificial Intelligence & Future Applications Proceedings of the 9th International Conference on Human Interaction and Emerging Technologies, IHIET-AI 2023, 2023-04-13 - 2023-04-19, Lausanne, Schweiz. doi: 10.54941/ahfe1002952. ISBN 978-1-958651-87-2. ISSN 2367-3370.

[img] PDF - Nur DLR-intern zugänglich
707kB

Offizielle URL: https://openaccess.cms-conferences.org/publications/book/978-1-958651-46-9/article/978-1-958651-46-9_29

Kurzfassung

Artificial intelligence (AI) systems can be beneficial in various disciplines such as medicine, space travel or air transport. The Project "Collaboration of aviation operators and AI systems" (LOKI) of the German Aerospace Center (DLR) aims to develop guidelines for a human-centered design of communication and also collaboration between users and AI systems. The Project focusses on areas of activity in air traffic management where operators work together collaboratively. To identify the potential for AI support of air traffic controllers as well as pilots, information about the coordination effort of aircrafts for air traffic controllers in the European airspace is needed. The aim of this paper is to identify areas of increased coordination effort for air traffic controllers based on four-dimensional radar data. Here, AI could be advantageous for air traffic management. For this purpose, we used flight tracking data from a network of ADS-B receivers. The data includes all flights in the upper European airspace in September 2019 and has a resolution of one data point per minute. First, the data was pre-processed and visualized. Afterwards three criteria for detecting possible communications between pilots and controllers were applied to the data. The first criterion examines the frequency of climbs and descents in the course of a flight. The second one analyses the changes in flight direction in the flight trajectories. The third criterion identifies aircraft that fall below a minimum vertical and lateral separation between each other. The Python programming language and various data science libraries were used to apply the criteria to the data. The result is a spatio-temporal cadastre with entries of possible controller communication which shows that relatively large areas with a high coordination effort for air traffic management controllers exist in Europe. These areas are mostly located in Central Western Europe and UK, but also in Spain, Portugal and Russia, inter alia. In reality, the coordination effort is probably even higher than in this model. Against this background, it is reasonable to conclude that the potential for using AI in air traffic management is rather high and that the use of AI can be beneficial for ATM operations in Europe.

elib-URL des Eintrags:https://elib.dlr.de/194938/
Dokumentart:Konferenzbeitrag (Vortrag)
Titel:Identification of Airspaces With Increased Coordination Effort Based on Radar Data
Autoren:
AutorenInstitution oder E-Mail-AdresseAutoren-ORCID-iDORCID Put Code
Holzenkamp, SörenSoeren.Holzenkamp (at) dlr.dehttps://orcid.org/0009-0008-9496-0243134853878
Jung, MartinM.Jung (at) dlr.dehttps://orcid.org/0000-0002-1860-297X134853879
Datum:2023
Erschienen in:Human Interaction and Emerging Technologies (IHIET 2023): Artificial Intelligence and Future Applications
Referierte Publikation:Ja
Open Access:Nein
Gold Open Access:Nein
In SCOPUS:Ja
In ISI Web of Science:Nein
Band:70
DOI:10.54941/ahfe1002952
Seitenbereich:Seiten 272-278
Herausgeber:
HerausgeberInstitution und/oder E-Mail-Adresse der HerausgeberHerausgeber-ORCID-iDORCID Put Code
Ahram, TareqInstitute for Advanced Systems Engineering, University of Central Florida, Orlando, USANICHT SPEZIFIZIERTNICHT SPEZIFIZIERT
Taiar, RedhaUniversité de Reims Champagne Ardenne, 51100 Grand Est, Francehttps://orcid.org/0000-0002-0227-3884NICHT SPEZIFIZIERT
Verlag:AHFE Open Access
Name der Reihe:Human Interaction & Emerging Technologies: Artificial Intelligence & Future Applications
ISSN:2367-3370
ISBN:978-1-958651-87-2
Status:veröffentlicht
Stichwörter:Air traffic management, Data mining, Radar data, AI, Air traffic controller, Data Science, Python
Veranstaltungstitel:Human Interaction & Emerging Technologies: Artificial Intelligence & Future Applications Proceedings of the 9th International Conference on Human Interaction and Emerging Technologies, IHIET-AI 2023
Veranstaltungsort:Lausanne, Schweiz
Veranstaltungsart:internationale Konferenz
Veranstaltungsbeginn:13 April 2023
Veranstaltungsende:19 April 2023
Veranstalter :AHFE International
HGF - Forschungsbereich:Luftfahrt, Raumfahrt und Verkehr
HGF - Programm:Luftfahrt
HGF - Programmthema:keine Zuordnung
DLR - Schwerpunkt:Luftfahrt
DLR - Forschungsgebiet:L - keine Zuordnung
DLR - Teilgebiet (Projekt, Vorhaben):L - Managementaufgaben Luftfahrt
Standort: Köln-Porz
Institute & Einrichtungen:Institut für Luftverkehr > Luftverkehrsökonomie
Hinterlegt von: Holzenkamp, Sören
Hinterlegt am:11 Mai 2023 13:39
Letzte Änderung:24 Apr 2024 20:55

Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags

Blättern
Suchen
Hilfe & Kontakt
Informationen
electronic library verwendet EPrints 3.3.12
Gestaltung Webseite und Datenbank: Copyright © Deutsches Zentrum für Luft- und Raumfahrt (DLR). Alle Rechte vorbehalten.