Jäckel, Florian (2023) A Closed-Form Correction for the Spalart-Allmaras Turbulence Model for Separated Flows. AIAA Journal, Seiten 1-12. American Institute of Aeronautics and Astronautics (AIAA). doi: 10.2514/1.J061649. ISSN 0001-1452.
PDF
- Nur DLR-intern zugänglich
- Verlagsversion (veröffentlichte Fassung)
2MB |
Offizielle URL: https://arc.aiaa.org/doi/full/10.2514/1.J061649
Kurzfassung
The field inversion and machine learning (FIML) approach is leveraged to obtain a closed-form correction for the Spalart–Allmaras turbulence model to improve predictions of separated flows. Based on field inversion results obtained using the first-generation FIML Classic approach, a simple and compact closed-form expression is chosen to be used as correction model. The thus obtained correction model is optimized using the second-generation FIML Direct approach. Training and validation cases consist of a selection of airfoils in a wide range of flow conditions as well as the flat plate. The correction model and results for the training and validation cases obtained with the augmented turbulence model are presented, demonstrating the improved flow predictions.
elib-URL des Eintrags: | https://elib.dlr.de/194879/ | ||||||||
---|---|---|---|---|---|---|---|---|---|
Dokumentart: | Zeitschriftenbeitrag | ||||||||
Zusätzliche Informationen: | eISSN 1533-385X | ||||||||
Titel: | A Closed-Form Correction for the Spalart-Allmaras Turbulence Model for Separated Flows | ||||||||
Autoren: |
| ||||||||
Datum: | 17 April 2023 | ||||||||
Erschienen in: | AIAA Journal | ||||||||
Referierte Publikation: | Ja | ||||||||
Open Access: | Nein | ||||||||
Gold Open Access: | Nein | ||||||||
In SCOPUS: | Ja | ||||||||
In ISI Web of Science: | Ja | ||||||||
DOI: | 10.2514/1.J061649 | ||||||||
Seitenbereich: | Seiten 1-12 | ||||||||
Verlag: | American Institute of Aeronautics and Astronautics (AIAA) | ||||||||
ISSN: | 0001-1452 | ||||||||
Status: | veröffentlicht | ||||||||
Stichwörter: | Field Inversion, Machine Learning, FIM-ML, Radial Basis Functions, Artificial Intelligence, CFD, TAU Code, Turbulence Modeling, Calibration, RANS | ||||||||
HGF - Forschungsbereich: | Luftfahrt, Raumfahrt und Verkehr | ||||||||
HGF - Programm: | Luftfahrt | ||||||||
HGF - Programmthema: | Effizientes Luftfahrzeug | ||||||||
DLR - Schwerpunkt: | Luftfahrt | ||||||||
DLR - Forschungsgebiet: | L EV - Effizientes Luftfahrzeug | ||||||||
DLR - Teilgebiet (Projekt, Vorhaben): | L - Digitale Technologien | ||||||||
Standort: | Göttingen | ||||||||
Institute & Einrichtungen: | Institut für Aerodynamik und Strömungstechnik > CASE, GO | ||||||||
Hinterlegt von: | Krumbein, Dr.-Ing. Andreas | ||||||||
Hinterlegt am: | 04 Mai 2023 13:14 | ||||||||
Letzte Änderung: | 15 Mai 2023 12:47 |
Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags