elib
DLR-Header
DLR-Logo -> http://www.dlr.de
DLR Portal Home | Impressum | Datenschutz | Kontakt | English
Schriftgröße: [-] Text [+]

Change Detection using Sentinel-1 and Sentinel-2 Time Series: A Comparison of Models for the Detection of Forest Disturbances

Busse, Caroline (2023) Change Detection using Sentinel-1 and Sentinel-2 Time Series: A Comparison of Models for the Detection of Forest Disturbances. Masterarbeit, Julius-Maximilians-Universität Würzburg (JMU).

Dieses Archiv kann nicht den Volltext zur Verfügung stellen.

Kurzfassung

Forests provide essential ecosystem services, such as biodiversity conservation and influencing the global climate system. Increasing frequencies of extreme weather events, as well as human-induced deforestation, pressure these ecosystems and lead to ongoing forest loss at a yearly rate of 4.7 million hectares. Remote sensing has proven to be a crucial tool for analyzing the patterns of these forest loss events at high spatial detail over vast extents. Time series analyses offer means for the early detection of forest disturbances. The goal of this study was to explore the potential of satellite data from optical and radar sources in combination with time series analysis for detecting deforestation in tropical forests. Optical satellite imagery from Sentinel-2 and Synthetic Aperture Radar (SAR) data from Sentinel-1 was applied. Three models combined with two optical vegetation indices and two SAR bands were compared in a benchmarking process. The models applied in this study performed best for the optical Sentinel-2 imagery, specifically the Disturbance Index (DI) combined with the CUSUM model generated the best results. Furthermore, the simpler models CUSUM and time series forecasting based on area-wide averaging showed lower omission errors in the forest loss detection than the more complex BFAST model. While the proposed approaches provide solid methods for deforestation detection in tropical forests, high-quality insitu measurements from different forest types related to different kinds of disturbance are required for further assessment of the applied methods and data as well as for a more detailed analysis of the underlying drivers of deforestation.

elib-URL des Eintrags:https://elib.dlr.de/194262/
Dokumentart:Hochschulschrift (Masterarbeit)
Zusätzliche Informationen:Advisors: Ullmann, Tobias and Thonfeld, Frank
Titel:Change Detection using Sentinel-1 and Sentinel-2 Time Series: A Comparison of Models for the Detection of Forest Disturbances
Autoren:
AutorenInstitution oder E-Mail-AdresseAutoren-ORCID-iDORCID Put Code
Busse, CarolineJulius-Maximilians-Universität Würzburg (JMU)NICHT SPEZIFIZIERTNICHT SPEZIFIZIERT
Datum:2023
Referierte Publikation:Nein
Open Access:Nein
Seitenanzahl:54
Status:veröffentlicht
Stichwörter:NDVI, DI, SAR, time series, BFAST, CUSUM, Sentinel-2, Sentinel-1, change detection, forest disturbances, deforestation
Institution:Julius-Maximilians-Universität Würzburg (JMU)
Abteilung:Institute for Geography and Geology
HGF - Forschungsbereich:Luftfahrt, Raumfahrt und Verkehr
HGF - Programm:Raumfahrt
HGF - Programmthema:Erdbeobachtung
DLR - Schwerpunkt:Raumfahrt
DLR - Forschungsgebiet:R EO - Erdbeobachtung
DLR - Teilgebiet (Projekt, Vorhaben):R - Geowissenschaftl. Fernerkundungs- und GIS-Verfahren
Standort: Oberpfaffenhofen
Institute & Einrichtungen:Deutsches Fernerkundungsdatenzentrum > Dynamik der Landoberfläche
Hinterlegt von: Thonfeld, Dr. Frank
Hinterlegt am:21 Mär 2023 11:49
Letzte Änderung:21 Mär 2023 11:49

Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags

Blättern
Suchen
Hilfe & Kontakt
Informationen
electronic library verwendet EPrints 3.3.12
Gestaltung Webseite und Datenbank: Copyright © Deutsches Zentrum für Luft- und Raumfahrt (DLR). Alle Rechte vorbehalten.