elib
DLR-Header
DLR-Logo -> http://www.dlr.de
DLR Portal Home | Impressum | Datenschutz | Kontakt | English
Schriftgröße: [-] Text [+]

Assessment of neural network-based predictions of chemical production rates in CFD solvers

Karl, Sebastian (2023) Assessment of neural network-based predictions of chemical production rates in CFD solvers. In: 10th EUCASS – 9th CEAS Conference 2023, Seiten 1-13. 10th EUCASS – 9th CEAS Conference 2023, 2023-07-09 - 2023-07-13, Lausanne, Schweiz. doi: 10.13009/EUCASS2023-347.

[img] PDF
2MB

Offizielle URL: https://www.eucass.eu/doi/EUCASS2023-347.pdf

Kurzfassung

The numerical simulation and analysis of chemically reacting flows often requires the evaluation of detailed reaction mechanisms. This is the case, for example, with lifted flames in combustors or with complex mixtures such as the engine, gas generator and ambient air combination in a rocket base flow. In the case of hydrocarbons in particular, chemistry is complex, mathematically stiff and requires many reactions and species to be considered. This requires significant additional CPU resources which are considerably larger than those needed for the solution of the fluid transport equations alone. Popular options to reduce the CPU demand of reacting flow simulations are the application of simplified combustion models such as flamelet or eddy breakup models or the use of reduced skeletal or global reaction mechanisms. However, this results in a limited range of applicability concerning the complexity of the gas mixtures, the range of thermodynamic states or the ability to predict kinetics driven lift-off or extinction phenomena. Another possibility to reduce the CPU cost and stiffness of the evaluation of the chemical source terms is the application of neural networks. The input of the network would be the mixture composition and the thermodynamic state and the output are the rates of change of species concentrations (source terms). Training data can be easily obtained from the exact evaluation of the law of mass action in conjunction with the reaction rates. However, the mathematical stiffness of the problem imposes a severe challenge for the applicability of neural networks. The paper outlines different implementation strategies of neural networks for the prediction of chemical source terms in CFD solvers and discusses their limitations based on the solution of generic reactor problems. Further, a robust and consistent neural network-based method to optimize existing global mechanisms for given thermodynamic conditions is introduced. This method is tested using generic reactor problems and the CFD analysis of a lifted methane air flame.

elib-URL des Eintrags:https://elib.dlr.de/194227/
Dokumentart:Konferenzbeitrag (Vortrag)
Titel:Assessment of neural network-based predictions of chemical production rates in CFD solvers
Autoren:
AutorenInstitution oder E-Mail-AdresseAutoren-ORCID-iDORCID Put Code
Karl, Sebastiansebastian.karl (at) dlr.dehttps://orcid.org/0000-0002-5558-6673NICHT SPEZIFIZIERT
Datum:Juli 2023
Erschienen in:10th EUCASS – 9th CEAS Conference 2023
Referierte Publikation:Ja
Open Access:Ja
Gold Open Access:Nein
In SCOPUS:Nein
In ISI Web of Science:Nein
DOI:10.13009/EUCASS2023-347
Seitenbereich:Seiten 1-13
Herausgeber:
HerausgeberInstitution und/oder E-Mail-Adresse der HerausgeberHerausgeber-ORCID-iDORCID Put Code
NICHT SPEZIFIZIERTEUCASSNICHT SPEZIFIZIERTNICHT SPEZIFIZIERT
NICHT SPEZIFIZIERTCEASNICHT SPEZIFIZIERTNICHT SPEZIFIZIERT
Status:veröffentlicht
Stichwörter:Combustion, CFD
Veranstaltungstitel:10th EUCASS – 9th CEAS Conference 2023
Veranstaltungsort:Lausanne, Schweiz
Veranstaltungsart:internationale Konferenz
Veranstaltungsbeginn:9 Juli 2023
Veranstaltungsende:13 Juli 2023
Veranstalter :EUCASS, CEAS
HGF - Forschungsbereich:Luftfahrt, Raumfahrt und Verkehr
HGF - Programm:Raumfahrt
HGF - Programmthema:Raumtransport
DLR - Schwerpunkt:Raumfahrt
DLR - Forschungsgebiet:R RP - Raumtransport
DLR - Teilgebiet (Projekt, Vorhaben):R - Projekt Amadeus
Standort: Göttingen
Institute & Einrichtungen:Institut für Aerodynamik und Strömungstechnik > Raumfahrzeuge, GO
Hinterlegt von: Karl, Dr. Sebastian
Hinterlegt am:19 Jul 2023 13:28
Letzte Änderung:24 Apr 2024 20:54

Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags

Blättern
Suchen
Hilfe & Kontakt
Informationen
electronic library verwendet EPrints 3.3.12
Gestaltung Webseite und Datenbank: Copyright © Deutsches Zentrum für Luft- und Raumfahrt (DLR). Alle Rechte vorbehalten.