Hoppe, Fabian und Knechtges, Philipp und Rüttgers, Alexander (2023) Parallel Zolotarev-SVD for the analysis of rocket combustion data. SIAM Conference on Computational Science and Engineering (CSE23), 2023-02-26 - 2023-03-03, Amsterdam.
PDF
- Nur DLR-intern zugänglich
1MB |
Kurzfassung
Singular value decomposition (SVD), also known as principal component analysis (PCA), is one of the oldest and most fundamental, but also very powerful mathematical tools in data science. This poster is concerned with the application of modern high-performance SVD algorithms to problems arising in, e.g., the context of rocket combustion at the German Aerospace Center (DLR). We report on our implementation within the PyTorch- and mpi4py-based HPC-data analytics software HEAT (Helmholtz Analytics Toolkit) developed at DLR, JSC, and KIT (Götz et al., 2020 IEEE International Conference on Big Data, pp. 276-287). The core of our SVD implementation is formed by the highly parallelizable Zolotarev-SVD algorithm proposed by Y. Nakatsukasa and R.W. Freund (2016, SIAM Review, Vol. 58, No. 3, pp. 461-493). We present numerical experiments on the respective scaling behavior. Moreover, depending on the concrete problem type, other well-known techniques, such as randomized or incremental algorithms, are shown to allow for further reduction of the computational costs.
elib-URL des Eintrags: | https://elib.dlr.de/194222/ | ||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Dokumentart: | Konferenzbeitrag (Poster) | ||||||||||||||||
Titel: | Parallel Zolotarev-SVD for the analysis of rocket combustion data | ||||||||||||||||
Autoren: |
| ||||||||||||||||
Datum: | 28 Februar 2023 | ||||||||||||||||
Referierte Publikation: | Ja | ||||||||||||||||
Open Access: | Nein | ||||||||||||||||
Gold Open Access: | Nein | ||||||||||||||||
In SCOPUS: | Nein | ||||||||||||||||
In ISI Web of Science: | Nein | ||||||||||||||||
Status: | veröffentlicht | ||||||||||||||||
Stichwörter: | SVD, PCA, Singular Value Decomposition, HPC, High Performance Computing, Data Analytics, Heat, Helmholtz Analytics Toolkit | ||||||||||||||||
Veranstaltungstitel: | SIAM Conference on Computational Science and Engineering (CSE23) | ||||||||||||||||
Veranstaltungsort: | Amsterdam | ||||||||||||||||
Veranstaltungsart: | internationale Konferenz | ||||||||||||||||
Veranstaltungsbeginn: | 26 Februar 2023 | ||||||||||||||||
Veranstaltungsende: | 3 März 2023 | ||||||||||||||||
Veranstalter : | Society for Industrial and Applied Mathematics (SIAM) | ||||||||||||||||
HGF - Forschungsbereich: | Luftfahrt, Raumfahrt und Verkehr | ||||||||||||||||
HGF - Programm: | Raumfahrt | ||||||||||||||||
HGF - Programmthema: | Technik für Raumfahrtsysteme | ||||||||||||||||
DLR - Schwerpunkt: | Raumfahrt | ||||||||||||||||
DLR - Forschungsgebiet: | R SY - Technik für Raumfahrtsysteme | ||||||||||||||||
DLR - Teilgebiet (Projekt, Vorhaben): | R - Grundlagenforschung im Bereich Maschinelles Lernen, R - HPDA-Umsetzung | ||||||||||||||||
Standort: | Köln-Porz | ||||||||||||||||
Institute & Einrichtungen: | Institut für Softwaretechnologie > High-Performance Computing Institut für Softwaretechnologie | ||||||||||||||||
Hinterlegt von: | Hoppe, Fabian | ||||||||||||||||
Hinterlegt am: | 27 Mär 2023 13:51 | ||||||||||||||||
Letzte Änderung: | 24 Apr 2024 20:54 |
Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags