elib
DLR-Header
DLR-Logo -> http://www.dlr.de
DLR Portal Home | Impressum | Datenschutz | Kontakt | English
Schriftgröße: [-] Text [+]

Machine-Learned Cloud Classes From Satellite Data for Process-Oriented Climate Model Evaluation

Kaps, Arndt und Lauer, Axel und Camps-Valls, Gustau und Gentine, Pierre und Gomez-Chova, Luis und Eyring, Veronika (2023) Machine-Learned Cloud Classes From Satellite Data for Process-Oriented Climate Model Evaluation. IEEE Transactions on Geoscience and Remote Sensing, 61, Seiten 1-15. IEEE - Institute of Electrical and Electronics Engineers. doi: 10.1109/TGRS.2023.3237008. ISSN 0196-2892.

[img] PDF - Verlagsversion (veröffentlichte Fassung)
7MB

Offizielle URL: https://dx.doi.org/10.1109/TGRS.2023.3237008

Kurzfassung

Clouds play a key role in regulating climate change but are difficult to simulate within Earth system models (ESMs). Improving the representation of clouds is one of the key tasks toward more robust climate change projections. This study introduces a new machine-learning-based framework relying on satellite observations to improve understanding of the representation of clouds and their relevant processes in climate models. The proposed method is capable of assigning distributions of established cloud types to coarse data. It facilitates a more objective evaluation of clouds in ESMs and improves the consistency of cloud process analysis. The method is built on satellite data from the Moderate Resolution Imaging Spectroradiometer (MODIS) instrument labeled by deep neural networks with cloud types defined by the World Meteorological Organization (WMO), using cloud-type labels from CloudSat as ground truth. The method is applicable to datasets with information about physical cloud variables comparable to MODIS satellite data and at sufficiently high temporal resolution. We apply the method to alternative satellite data from the Cloud_cci project (ESA Climate Change Initiative), coarse-grained to typical resolutions of climate models. The resulting cloud-type distributions are physically consistent and the horizontal resolutions typical of ESMs are sufficient to apply our method. We recommend outputting crucial variables required by our method for future ESM data evaluation. This will enable the use of labeled satellite data for a more systematic evaluation of clouds in climate models

elib-URL des Eintrags:https://elib.dlr.de/193838/
Dokumentart:Zeitschriftenbeitrag
Titel:Machine-Learned Cloud Classes From Satellite Data for Process-Oriented Climate Model Evaluation
Autoren:
AutorenInstitution oder E-Mail-AdresseAutoren-ORCID-iDORCID Put Code
Kaps, ArndtDLR, IPAhttps://orcid.org/0000-0002-5368-5950NICHT SPEZIFIZIERT
Lauer, AxelDLR, IPAhttps://orcid.org/0000-0002-9270-1044NICHT SPEZIFIZIERT
Camps-Valls, GustauUniversity of Valencia, Valencia, Spainhttps://orcid.org/0000-0003-1683-2138NICHT SPEZIFIZIERT
Gentine, PierreColumbia University, New York, NY, USAhttps://orcid.org/0000-0002-0845-8345NICHT SPEZIFIZIERT
Gomez-Chova, LuisUniversity of Valencia, Valencia, Spainhttps://orcid.org/0000-0003-3924-1269NICHT SPEZIFIZIERT
Eyring, VeronikaDLR, IPAhttps://orcid.org/0000-0002-6887-4885NICHT SPEZIFIZIERT
Datum:23 Januar 2023
Erschienen in:IEEE Transactions on Geoscience and Remote Sensing
Referierte Publikation:Ja
Open Access:Ja
Gold Open Access:Nein
In SCOPUS:Ja
In ISI Web of Science:Ja
Band:61
DOI:10.1109/TGRS.2023.3237008
Seitenbereich:Seiten 1-15
Verlag:IEEE - Institute of Electrical and Electronics Engineers
ISSN:0196-2892
Status:veröffentlicht
Stichwörter:Climate change , Clouds , Machine learning , Modeling , Process control , Satellite communication , MODIS
HGF - Forschungsbereich:Luftfahrt, Raumfahrt und Verkehr
HGF - Programm:Raumfahrt
HGF - Programmthema:Erdbeobachtung
DLR - Schwerpunkt:Raumfahrt
DLR - Forschungsgebiet:R EO - Erdbeobachtung
DLR - Teilgebiet (Projekt, Vorhaben):R - Atmosphären- und Klimaforschung
Standort: Oberpfaffenhofen
Institute & Einrichtungen:Institut für Physik der Atmosphäre > Erdsystemmodell -Evaluation und -Analyse
Hinterlegt von: Kaps, Arndt
Hinterlegt am:26 Apr 2023 14:40
Letzte Änderung:26 Apr 2023 14:40

Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags

Blättern
Suchen
Hilfe & Kontakt
Informationen
electronic library verwendet EPrints 3.3.12
Gestaltung Webseite und Datenbank: Copyright © Deutsches Zentrum für Luft- und Raumfahrt (DLR). Alle Rechte vorbehalten.