Deiler, Christoph (2023) A Smart Data Approach to Determine an Aircraft Performance Model From an Operational Flight Data Base. AIAA SCITECH 2023 Forum, 2023-01-23 - 2023-01-27, National Harbor, MD, USA. doi: 10.2514/6.2023-0797.
Dieses Archiv kann nicht den Volltext zur Verfügung stellen.
Offizielle URL: https://arc.aiaa.org/doi/10.2514/6.2023-0797
Kurzfassung
High-quality flight performance models are essential for the reliable prediction of the aircraft flight trajectory and accurate flight planning. An innovative process to determine an aircraft performance model from operational flight data with limited a priori knowledge is developed to target this goal. The given big data problem is solved by application of fundamental engineering knowledge and a specific data evaluation strategy. The resulting smart data approach is fundamentally different from existing artificial intelligence methods or other data analysis strategies to solve such big data problems. An a priori given aerodynamic model is updated to express the characteristics of an Airbus A320neo aircraft on the example of a given large database of operational flights; after the successful determination of an engine thrust model formulation based on the same flight data. The updated aerodynamic models for the different flap/slat configurations are compared to the information available from flight data and the results are discussed in terms of model quality. Finally, the model is validated with a dynamic simulation for an example flight data set.
elib-URL des Eintrags: | https://elib.dlr.de/193453/ | ||||||||
---|---|---|---|---|---|---|---|---|---|
Dokumentart: | Konferenzbeitrag (Vortrag) | ||||||||
Titel: | A Smart Data Approach to Determine an Aircraft Performance Model From an Operational Flight Data Base | ||||||||
Autoren: |
| ||||||||
Datum: | 19 Januar 2023 | ||||||||
Referierte Publikation: | Ja | ||||||||
Open Access: | Nein | ||||||||
Gold Open Access: | Nein | ||||||||
In SCOPUS: | Nein | ||||||||
In ISI Web of Science: | Nein | ||||||||
DOI: | 10.2514/6.2023-0797 | ||||||||
Status: | veröffentlicht | ||||||||
Stichwörter: | Flight Performance, Big Data, System Identification, Aircraft Model, LNAS | ||||||||
Veranstaltungstitel: | AIAA SCITECH 2023 Forum | ||||||||
Veranstaltungsort: | National Harbor, MD, USA | ||||||||
Veranstaltungsart: | internationale Konferenz | ||||||||
Veranstaltungsbeginn: | 23 Januar 2023 | ||||||||
Veranstaltungsende: | 27 Januar 2023 | ||||||||
Veranstalter : | American Institute of Aeronautics and Astronautics, Inc. | ||||||||
HGF - Forschungsbereich: | Luftfahrt, Raumfahrt und Verkehr | ||||||||
HGF - Programm: | Luftfahrt | ||||||||
HGF - Programmthema: | keine Zuordnung | ||||||||
DLR - Schwerpunkt: | Luftfahrt | ||||||||
DLR - Forschungsgebiet: | L - keine Zuordnung | ||||||||
DLR - Teilgebiet (Projekt, Vorhaben): | L - keine Zuordnung | ||||||||
Standort: | Braunschweig | ||||||||
Institute & Einrichtungen: | Institut für Flugsystemtechnik > Flugdynamik und Simulation Institut für Flugsystemtechnik | ||||||||
Hinterlegt von: | Deiler, Dr. Christoph | ||||||||
Hinterlegt am: | 20 Jan 2023 15:46 | ||||||||
Letzte Änderung: | 24 Apr 2024 20:54 |
Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags