elib
DLR-Header
DLR-Logo -> http://www.dlr.de
DLR Portal Home | Impressum | Datenschutz | Kontakt | English
Schriftgröße: [-] Text [+]

Direct numerical simulation of momentum and heat transport in idealized Czochralski crystal groth configurations

Wagner, Claus und Friedrich, Rainer (2003) Direct numerical simulation of momentum and heat transport in idealized Czochralski crystal groth configurations. In: Third Symposium on Turbulence and Shear Flow Phenomena 2003, Seiten 775-780. Begell House. Third Symposium on Turbulence and Shear Flow Phenomena, 2003-06-25 - 2003-06-27, International Center, Sendai, Japan. doi: 10.1615/TSFP3.1310. ISSN 2642-0554.

[img] PDF
410kB

Offizielle URL: https://dl.begellhouse.com/references/3ce1b491115b5c16,3658f79a5fcf8fbd,6ccdaf02778538c2.html#

Kurzfassung

Turbulent momentum and heat transport in idealized Czochralski crystal growth configurations is investigated by means of direct numerical simulation. The analysis of the flow data focuses on the influence of crystal and crucible rotation on the flow structures and the development of temperature fluctuations. A numerical parameter study is performed to investigate how the variation of the numerous flow parameters affect the turbulent transport processes. Finally, a direct numerical simulation is conducted with parameters taken from experiment in order to allow a direct comparison between numerical and experimental results. It is found that the counter-rotation of the crystal and crucible leads to a complex flow, which is characterized by three major recirculation zones, if crucible rotation dominates the flow. The dynamics of the flow are controlled by centrifugal forces counteracting buoyancy and surface tension effects. High temperature fluctuations are created within or close to the crystallization zone. Neither a variation of the melt height, nor a reduction of the crystal rotation rate or a change of the Grashof and Marangoni numbers has a major effect on the bulk flow structure and overall heat transfer. Increasing rotation of the crystal changes the bulk flow structure strongly and leads to an increased value of maximum rms temperature fluctuations, the position of which is shifted towards the crucible bottom. A shifted position of maximum rms temperature fluctuations is also observed if heat radiation across the free surface is taken into account.

elib-URL des Eintrags:https://elib.dlr.de/193331/
Dokumentart:Konferenzbeitrag (Vortrag)
Titel:Direct numerical simulation of momentum and heat transport in idealized Czochralski crystal groth configurations
Autoren:
AutorenInstitution oder E-Mail-AdresseAutoren-ORCID-iDORCID Put Code
Wagner, ClausClaus.Wagner (at) dlr.dehttps://orcid.org/0000-0003-2273-0568NICHT SPEZIFIZIERT
Friedrich, RainerTU MünchenNICHT SPEZIFIZIERTNICHT SPEZIFIZIERT
Datum:2003
Erschienen in:Third Symposium on Turbulence and Shear Flow Phenomena 2003
Referierte Publikation:Ja
Open Access:Ja
Gold Open Access:Nein
In SCOPUS:Nein
In ISI Web of Science:Nein
DOI:10.1615/TSFP3.1310
Seitenbereich:Seiten 775-780
Verlag:Begell House
ISSN:2642-0554
Status:veröffentlicht
Stichwörter:DNS, Czochralksi flow
Veranstaltungstitel:Third Symposium on Turbulence and Shear Flow Phenomena
Veranstaltungsort:International Center, Sendai, Japan
Veranstaltungsart:internationale Konferenz
Veranstaltungsbeginn:25 Juni 2003
Veranstaltungsende:27 Juni 2003
HGF - Forschungsbereich:Luftfahrt, Raumfahrt und Verkehr
HGF - Programm:Verkehr
HGF - Programmthema:Verkehrssystem
DLR - Schwerpunkt:Verkehr
DLR - Forschungsgebiet:V VS - Verkehrssystem
DLR - Teilgebiet (Projekt, Vorhaben):V - Energie und Verkehr (alt)
Standort: Göttingen
Institute & Einrichtungen:Institut für Aerodynamik und Strömungstechnik > Bodengebundene Fahrzeuge
Hinterlegt von: Wagner, Prof. Dr.-Ing. Claus
Hinterlegt am:30 Mär 2023 16:05
Letzte Änderung:24 Apr 2024 20:54

Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags

Blättern
Suchen
Hilfe & Kontakt
Informationen
electronic library verwendet EPrints 3.3.12
Gestaltung Webseite und Datenbank: Copyright © Deutsches Zentrum für Luft- und Raumfahrt (DLR). Alle Rechte vorbehalten.