Dieter, Tamara und Zisgen, Horst (2023) Evaluation of the Explanatory Power Of Layer-wise Relevance Propagation using Adversarial Examples. Neural Processing Letters. Springer Nature. doi: 10.1007/s11063-023-11166-8. ISSN 1370-4621.
PDF
- Verlagsversion (veröffentlichte Fassung)
1MB |
Offizielle URL: https://link.springer.com/article/10.1007/s11063-023-11166-8
Kurzfassung
Approaches for visualizing and explaining the decision process of convolutional neural networks (CNNs) have recently received increasing attention. Particularly popular approaches are so-called saliency methods, which aim to assign a valence to each input pixel based on its importance and influence on the classification via saliency maps. In our paper, we contribute by a novel analyzing approach build on adversarial examples to investigate the explanatory power of saliency methods exemplified by layer-wise relevance propagation (LRP). Based on the hypothesis that distinct decisions, such as an image's classification and the classification of its corresponding adversarial examples, should yield to dissimilar saliency maps to provide transparent rationales, we break down relevance scores of images and corresponding adversarial examples and analyze them using a comprehensive statistical evaluation. It turns out that different relevance decomposition rules of LRP do not lead to clearly distinguishable saliency maps for images and corresponding adversarial examples, neither in terms of their contour lines, nor in terms of the statistical analysis.
elib-URL des Eintrags: | https://elib.dlr.de/193232/ | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Dokumentart: | Zeitschriftenbeitrag | ||||||||||||
Titel: | Evaluation of the Explanatory Power Of Layer-wise Relevance Propagation using Adversarial Examples | ||||||||||||
Autoren: |
| ||||||||||||
Datum: | 10 März 2023 | ||||||||||||
Erschienen in: | Neural Processing Letters | ||||||||||||
Referierte Publikation: | Ja | ||||||||||||
Open Access: | Ja | ||||||||||||
Gold Open Access: | Nein | ||||||||||||
In SCOPUS: | Ja | ||||||||||||
In ISI Web of Science: | Ja | ||||||||||||
DOI: | 10.1007/s11063-023-11166-8 | ||||||||||||
Herausgeber: |
| ||||||||||||
Verlag: | Springer Nature | ||||||||||||
Name der Reihe: | Neural Processing Letters | ||||||||||||
ISSN: | 1370-4621 | ||||||||||||
Status: | veröffentlicht | ||||||||||||
Stichwörter: | Deep Learning, Layer-wise Relevance Propagation, Adversarial Examples, Explainable Artificial Intelligence, Saliency Maps | ||||||||||||
HGF - Forschungsbereich: | keine Zuordnung | ||||||||||||
HGF - Programm: | keine Zuordnung | ||||||||||||
HGF - Programmthema: | keine Zuordnung | ||||||||||||
DLR - Schwerpunkt: | keine Zuordnung | ||||||||||||
DLR - Forschungsgebiet: | keine Zuordnung | ||||||||||||
DLR - Teilgebiet (Projekt, Vorhaben): | keine Zuordnung | ||||||||||||
Standort: | Rhein-Sieg-Kreis | ||||||||||||
Institute & Einrichtungen: | Institut für den Schutz terrestrischer Infrastrukturen > Digitale Zwillinge von Infrastrukturen Institut für den Schutz terrestrischer Infrastrukturen | ||||||||||||
Hinterlegt von: | Lenhard, Tamara | ||||||||||||
Hinterlegt am: | 17 Mär 2023 09:25 | ||||||||||||
Letzte Änderung: | 24 Jul 2023 11:08 |
Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags