Dieter, Tamara und Weinmann, Andreas und Brucherseifer, Eva (2023) Generating Synthetic Data for Deep Learning-Based Drone Detection. In: AIP Conference Proceedings, 1 (2939). American Institute of Physics Conference Proceedings. 48th International Conference “Applications of Mathematics in Engineering and Economics” (AMEE'22), 2022-06-07 - 2022-06-13, Sozopol, Bulgaria. doi: 10.1063/5.0180345. ISSN 0094-243X.
PDF
- Nur DLR-intern zugänglich
2MB |
Offizielle URL: https://pubs.aip.org/aip/acp/article/2939/1/030007/2929077/Generating-synthetic-data-for-deep-learning-based
Kurzfassung
Drone detection is an important yet challenging task in the context of object detection. The development of robust and reliable drone detection systems requires large amounts of labeled data, especially when using deep learning (DL) models. Unfortunately, acquiring real data is expensive, time-consuming, and often limited by external factors. This makes synthetic data a promising approach to addressing data deficiencies. In this paper, we present a data generation pipeline based on Unreal Engine 4.25 and Microsoft AirSim, designed to create synthetic labeled data for drone detection using three-dimensional environments. As part of an ablation study, we investigate the potential use of synthetic data in drone detection by analyzing different training strategies, influencing factors, and data generation parameters, specifically related to the visual appearance of a drone.
elib-URL des Eintrags: | https://elib.dlr.de/193173/ | ||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Dokumentart: | Konferenzbeitrag (Vortrag) | ||||||||||||||||
Titel: | Generating Synthetic Data for Deep Learning-Based Drone Detection | ||||||||||||||||
Autoren: |
| ||||||||||||||||
Datum: | 2023 | ||||||||||||||||
Erschienen in: | AIP Conference Proceedings | ||||||||||||||||
Referierte Publikation: | Ja | ||||||||||||||||
Open Access: | Nein | ||||||||||||||||
Gold Open Access: | Nein | ||||||||||||||||
In SCOPUS: | Ja | ||||||||||||||||
In ISI Web of Science: | Nein | ||||||||||||||||
Band: | 1 | ||||||||||||||||
DOI: | 10.1063/5.0180345 | ||||||||||||||||
Verlag: | American Institute of Physics Conference Proceedings | ||||||||||||||||
ISSN: | 0094-243X | ||||||||||||||||
Status: | veröffentlicht | ||||||||||||||||
Stichwörter: | Drone Detection, Deep Learning, Synthetic Data | ||||||||||||||||
Veranstaltungstitel: | 48th International Conference “Applications of Mathematics in Engineering and Economics” (AMEE'22) | ||||||||||||||||
Veranstaltungsort: | Sozopol, Bulgaria | ||||||||||||||||
Veranstaltungsart: | internationale Konferenz | ||||||||||||||||
Veranstaltungsbeginn: | 7 Juni 2022 | ||||||||||||||||
Veranstaltungsende: | 13 Juni 2022 | ||||||||||||||||
Veranstalter : | Technical University of Sofia | ||||||||||||||||
HGF - Forschungsbereich: | keine Zuordnung | ||||||||||||||||
HGF - Programm: | keine Zuordnung | ||||||||||||||||
HGF - Programmthema: | keine Zuordnung | ||||||||||||||||
DLR - Schwerpunkt: | keine Zuordnung | ||||||||||||||||
DLR - Forschungsgebiet: | keine Zuordnung | ||||||||||||||||
DLR - Teilgebiet (Projekt, Vorhaben): | keine Zuordnung | ||||||||||||||||
Standort: | Rhein-Sieg-Kreis | ||||||||||||||||
Institute & Einrichtungen: | Institut für den Schutz terrestrischer Infrastrukturen > Digitale Zwillinge von Infrastrukturen Institut für den Schutz terrestrischer Infrastrukturen | ||||||||||||||||
Hinterlegt von: | Lenhard, Tamara | ||||||||||||||||
Hinterlegt am: | 06 Mär 2023 09:37 | ||||||||||||||||
Letzte Änderung: | 24 Apr 2024 20:54 |
Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags