Bokker, Ode und Schlachter, Henning und Beutel, Vanessa und Geißendörfer, Stefan und von Maydell, Karsten (2022) Reactive Power Control of a Converter in a Hardware-Based Environment Using Deep Reinforcement Learning. Energies. Multidisciplinary Digital Publishing Institute (MDPI). doi: 10.3390/en16010078. ISSN 1996-1073.
|
PDF
- Verlagsversion (veröffentlichte Fassung)
2MB |
Kurzfassung
Due to the increasing penetration of the power grid with renewable, distributed energy re-sources, new strategies for voltage stabilization in low voltage distribution grids must be devel-oped. One approach to autonomous voltage control is to apply reinforcement learning (RL) for reactive power injection by converters. In this work, to implement a secure test environment in-cluding real hardware influences for such intelligent algorithms, a power hardware-in-the-loop (PHIL) approach is used to combine a virtually simulated grid with real hardware devices to em-ulate as realistic grid states as possible. The PHIL environment is validated through the identifica-tion of system limits and analysis of deviations to a software model of the test grid. Finally, an adaptive volt–var control algorithm using RL is implemented to control reactive power injection of a real converter within the test environment. Despite facing more difficult conditions in the hardware than in the software environment, the algorithm is successfully integrated to control the voltage at a grid connection point in a low voltage grid. Thus, the proposed study underlines the potential to use RL in the voltage stabilization of future power grids.
| elib-URL des Eintrags: | https://elib.dlr.de/192833/ | ||||||||||||||||||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Dokumentart: | Zeitschriftenbeitrag | ||||||||||||||||||||||||
| Titel: | Reactive Power Control of a Converter in a Hardware-Based Environment Using Deep Reinforcement Learning | ||||||||||||||||||||||||
| Autoren: |
| ||||||||||||||||||||||||
| Datum: | 22 Dezember 2022 | ||||||||||||||||||||||||
| Erschienen in: | Energies | ||||||||||||||||||||||||
| Referierte Publikation: | Ja | ||||||||||||||||||||||||
| Open Access: | Ja | ||||||||||||||||||||||||
| Gold Open Access: | Ja | ||||||||||||||||||||||||
| In SCOPUS: | Ja | ||||||||||||||||||||||||
| In ISI Web of Science: | Ja | ||||||||||||||||||||||||
| DOI: | 10.3390/en16010078 | ||||||||||||||||||||||||
| Verlag: | Multidisciplinary Digital Publishing Institute (MDPI) | ||||||||||||||||||||||||
| ISSN: | 1996-1073 | ||||||||||||||||||||||||
| Status: | veröffentlicht | ||||||||||||||||||||||||
| Stichwörter: | power grid; reactive power; voltage control; power hardware-in-the-loop | ||||||||||||||||||||||||
| HGF - Forschungsbereich: | Energie | ||||||||||||||||||||||||
| HGF - Programm: | Energiesystemdesign | ||||||||||||||||||||||||
| HGF - Programmthema: | Digitalisierung und Systemtechnologie | ||||||||||||||||||||||||
| DLR - Schwerpunkt: | Energie | ||||||||||||||||||||||||
| DLR - Forschungsgebiet: | E SY - Energiesystemtechnologie und -analyse | ||||||||||||||||||||||||
| DLR - Teilgebiet (Projekt, Vorhaben): | E - Energiesystemtechnologie | ||||||||||||||||||||||||
| Standort: | Oldenburg | ||||||||||||||||||||||||
| Institute & Einrichtungen: | Institut für Vernetzte Energiesysteme > Energiesystemtechnologie | ||||||||||||||||||||||||
| Hinterlegt von: | Bokker, Ode | ||||||||||||||||||||||||
| Hinterlegt am: | 04 Jan 2023 11:17 | ||||||||||||||||||||||||
| Letzte Änderung: | 19 Okt 2023 14:56 |
Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags