Bokker, Ode und Schlachter, Henning und Beutel, Vanessa und Geißendörfer, Stefan und von Maydell, Karsten (2022) Reactive Power Control of a Converter in a Hardware-Based Environment Using Deep Reinforcement Learning. Energies. Multidisciplinary Digital Publishing Institute (MDPI). doi: 10.3390/en16010078. ISSN 1996-1073.
PDF
- Verlagsversion (veröffentlichte Fassung)
2MB |
Kurzfassung
Due to the increasing penetration of the power grid with renewable, distributed energy re-sources, new strategies for voltage stabilization in low voltage distribution grids must be devel-oped. One approach to autonomous voltage control is to apply reinforcement learning (RL) for reactive power injection by converters. In this work, to implement a secure test environment in-cluding real hardware influences for such intelligent algorithms, a power hardware-in-the-loop (PHIL) approach is used to combine a virtually simulated grid with real hardware devices to em-ulate as realistic grid states as possible. The PHIL environment is validated through the identifica-tion of system limits and analysis of deviations to a software model of the test grid. Finally, an adaptive volt–var control algorithm using RL is implemented to control reactive power injection of a real converter within the test environment. Despite facing more difficult conditions in the hardware than in the software environment, the algorithm is successfully integrated to control the voltage at a grid connection point in a low voltage grid. Thus, the proposed study underlines the potential to use RL in the voltage stabilization of future power grids.
elib-URL des Eintrags: | https://elib.dlr.de/192833/ | ||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Dokumentart: | Zeitschriftenbeitrag | ||||||||||||||||||||||||
Titel: | Reactive Power Control of a Converter in a Hardware-Based Environment Using Deep Reinforcement Learning | ||||||||||||||||||||||||
Autoren: |
| ||||||||||||||||||||||||
Datum: | 22 Dezember 2022 | ||||||||||||||||||||||||
Erschienen in: | Energies | ||||||||||||||||||||||||
Referierte Publikation: | Ja | ||||||||||||||||||||||||
Open Access: | Ja | ||||||||||||||||||||||||
Gold Open Access: | Ja | ||||||||||||||||||||||||
In SCOPUS: | Ja | ||||||||||||||||||||||||
In ISI Web of Science: | Ja | ||||||||||||||||||||||||
DOI: | 10.3390/en16010078 | ||||||||||||||||||||||||
Verlag: | Multidisciplinary Digital Publishing Institute (MDPI) | ||||||||||||||||||||||||
ISSN: | 1996-1073 | ||||||||||||||||||||||||
Status: | veröffentlicht | ||||||||||||||||||||||||
Stichwörter: | power grid; reactive power; voltage control; power hardware-in-the-loop | ||||||||||||||||||||||||
HGF - Forschungsbereich: | Energie | ||||||||||||||||||||||||
HGF - Programm: | Energiesystemdesign | ||||||||||||||||||||||||
HGF - Programmthema: | Digitalisierung und Systemtechnologie | ||||||||||||||||||||||||
DLR - Schwerpunkt: | Energie | ||||||||||||||||||||||||
DLR - Forschungsgebiet: | E SY - Energiesystemtechnologie und -analyse | ||||||||||||||||||||||||
DLR - Teilgebiet (Projekt, Vorhaben): | E - Energiesystemtechnologie | ||||||||||||||||||||||||
Standort: | Oldenburg | ||||||||||||||||||||||||
Institute & Einrichtungen: | Institut für Vernetzte Energiesysteme > Energiesystemtechnologie | ||||||||||||||||||||||||
Hinterlegt von: | Bokker, Ode | ||||||||||||||||||||||||
Hinterlegt am: | 04 Jan 2023 11:17 | ||||||||||||||||||||||||
Letzte Änderung: | 19 Okt 2023 14:56 |
Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags