elib
DLR-Header
DLR-Logo -> http://www.dlr.de
DLR Portal Home | Impressum | Datenschutz | Kontakt | English
Schriftgröße: [-] Text [+]

Deep Learning Based Cloud Cover Parameterization for ICON

Grundner, Arthur und Beucler, Tom und Gentine, Pierre und Iglesias-Suarez, Fernando und Giorgetta, Marco A. und Eyring, Veronika (2022) Deep Learning Based Cloud Cover Parameterization for ICON. Journal of Advances in Modeling Earth Systems, 14 (12), e2021MS002959. Wiley. doi: 10.1029/2021MS002959. ISSN 1942-2466.

[img] PDF - Verlagsversion (veröffentlichte Fassung)
2MB

Offizielle URL: https://agupubs.onlinelibrary.wiley.com/doi/10.1029/2021MS002959

Kurzfassung

A promising approach to improve cloud parameterizations within climate models and thus climate projections is to use deep learning in combination with training data from storm-resolving model (SRM) simulations. The ICOsahedral Non-hydrostatic (ICON) modeling framework permits simulations ranging from numerical weather prediction to climate projections, making it an ideal target to develop neural network (NN) based parameterizations for sub-grid scale processes. Within the ICON framework, we train NN based cloud cover parameterizations with coarse-grained data based on realistic regional and global ICON SRM simulations. We set up three different types of NNs that differ in the degree of vertical locality they assume for diagnosing cloud cover from coarse-grained atmospheric state variables. The NNs accurately estimate sub-grid scale cloud cover from coarse-grained data that has similar geographical characteristics as their training data. Additionally, globally trained NNs can reproduce sub-grid scale cloud cover of the regional SRM simulation. Using the game-theory based interpretability library SHapley Additive exPlanations, we identify an overemphasis on specific humidity and cloud ice as the reason why our column-based NN cannot perfectly generalize from the global to the regional coarse-grained SRM data. The interpretability tool also helps visualize similarities and differences in feature importance between regionally and globally trained column-based NNs, and reveals a local relationship between their cloud cover predictions and the thermodynamic environment. Our results show the potential of deep learning to derive accurate yet interpretable cloud cover parameterizations from global SRMs, and suggest that neighborhood-based models may be a good compromise between accuracy and generalizability.

elib-URL des Eintrags:https://elib.dlr.de/192830/
Dokumentart:Zeitschriftenbeitrag
Titel:Deep Learning Based Cloud Cover Parameterization for ICON
Autoren:
AutorenInstitution oder E-Mail-AdresseAutoren-ORCID-iDORCID Put Code
Grundner, ArthurDLR, IPAhttps://orcid.org/0000-0002-3765-242XNICHT SPEZIFIZIERT
Beucler, TomUniversity of Lausanne, Lausanne, Switzerlandhttps://orcid.org/0000-0002-5731-1040NICHT SPEZIFIZIERT
Gentine, PierreColumbia University, New York, USAhttps://orcid.org/0000-0002-0845-8345NICHT SPEZIFIZIERT
Iglesias-Suarez, FernandoDLR, IPAhttps://orcid.org/0000-0003-3403-8245NICHT SPEZIFIZIERT
Giorgetta, Marco A.MPI für Meteorologie, Hamburghttps://orcid.org/0000-0002-4278-1963NICHT SPEZIFIZIERT
Eyring, VeronikaDLR, IPAhttps://orcid.org/0000-0002-6887-4885NICHT SPEZIFIZIERT
Datum:8 Dezember 2022
Erschienen in:Journal of Advances in Modeling Earth Systems
Referierte Publikation:Ja
Open Access:Ja
Gold Open Access:Ja
In SCOPUS:Ja
In ISI Web of Science:Ja
Band:14
DOI:10.1029/2021MS002959
Seitenbereich:e2021MS002959
Verlag:Wiley
Name der Reihe:Machine Learning Application to Earth System Modeling
ISSN:1942-2466
Status:veröffentlicht
Stichwörter:Cloud Cover, Parameterization, Machine Learning, Neural Network, Explainable AI, SHAP
HGF - Forschungsbereich:Luftfahrt, Raumfahrt und Verkehr
HGF - Programm:Raumfahrt
HGF - Programmthema:Erdbeobachtung
DLR - Schwerpunkt:Raumfahrt
DLR - Forschungsgebiet:R EO - Erdbeobachtung
DLR - Teilgebiet (Projekt, Vorhaben):R - Atmosphären- und Klimaforschung
Standort: Oberpfaffenhofen
Institute & Einrichtungen:Institut für Physik der Atmosphäre > Erdsystemmodell -Evaluation und -Analyse
Hinterlegt von: Grundner, Arthur
Hinterlegt am:21 Dez 2022 15:50
Letzte Änderung:21 Dez 2022 15:50

Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags

Blättern
Suchen
Hilfe & Kontakt
Informationen
electronic library verwendet EPrints 3.3.12
Gestaltung Webseite und Datenbank: Copyright © Deutsches Zentrum für Luft- und Raumfahrt (DLR). Alle Rechte vorbehalten.