elib
DLR-Header
DLR-Logo -> http://www.dlr.de
DLR Portal Home | Impressum | Datenschutz | Kontakt | English
Schriftgröße: [-] Text [+]

Applying Bayesian Inference to Estimate Uncertainties in the Aerodynamic Database of CALLISTO

Krummen, Sven und Tummala, Pavan und Wilken, Jascha und Dumont, Etienne und Ertl, Moritz und Ecker, Tobias und Riehmer, Johannes und Klevanski, Josef (2023) Applying Bayesian Inference to Estimate Uncertainties in the Aerodynamic Database of CALLISTO. In: 2022 IEEE Aerospace Conference, AERO 2022. IEEE Aerospace Conference, 04.-11. März 2023, Big Sky, Montana, USA. ISBN 978-166543760-8. ISSN 1095-323X. (eingereichter Beitrag)

WarnungEs ist eine neuere Version dieses Eintrags verfügbar.

[img] PDF
5MB

Kurzfassung

The three national space centers DLR, CNES & JAXA have joined their efforts in the project CALLISTO to develop and mature key technologies for future operational Reusable Launch Vehicles (RLVs). The goal of this project is to develop, manufacture and test a reusable Vertical-Takeoff Vertical-Landing (VTVL) first stage demonstrator, which will be operated at the European Spaceport in French Guiana from late 2024. One important aspect in the development of RLVs, but also of aerospace vehicles in general, is the generation of an Aerodynamic Database (AEDB) which characterizes the aerodynamic flying qualities of the vehicle. These databases are commonly aggregated from Computational Fluid Dynamics (CFD) simulations and Wind Tunnel Tests (WTTs) via simple heuristic models. Whereas this classical approach is suitable for the estimation of nominal aerodynamic coefficients, the quantification of uncertainties in this pre-flight data with respect to the final flight behavior is still a difficult task that involves a lot of human expert knowledge and "gut feeling". Particularly for launch vehicles, these uncertainties are however essential to ensure robust guidance and control algorithms, as well as sufficient vehicle performance for a selected mission profile. For CALLISTO, in parallel to a classical approach, a new methodology has now been tested to estimate these uncertainties within the AEDB: To apply Bayesian Inference to predict a probability distribution over the aerodynamic coefficients, conditional on the available test and simulation results and on prior knowledge. This methodology has already been well-established in other data science domains, but for aerospace engineering only very few use-cases are known so far. With this new approach an objectively traceable modelling of the aerodynamic uncertainties should be possible. This paper presents the current development state of the Bayesian aerodynamic uncertainties model of CALLISTO. After problem definition and a short introduction to the underlying dataset, the paper mainly focuses on the used modelling techniques and the applicability of Bayesian methods to the aerodynamic characterization problem. Selected results are shown for Bayesian models and compared against the classical modelling approach, while advantages and disadvantages of the Bayesian methodology are discussed. It is shown that the implemented Bayesian Gaussian process model can infer the typical characteristics of the AEDB from the available datasets, while having comparable prediction qualities as the reference model. Observed differences in the variance and bias characteristics are discussed for both models.

elib-URL des Eintrags:https://elib.dlr.de/192816/
Dokumentart:Konferenzbeitrag (Vortrag)
Titel:Applying Bayesian Inference to Estimate Uncertainties in the Aerodynamic Database of CALLISTO
Autoren:
AutorenInstitution oder E-Mail-AdresseAutoren-ORCID-iDORCID Put Code
Krummen, SvenSven.Krummen (at) dlr.dehttps://orcid.org/0000-0002-4126-688XNICHT SPEZIFIZIERT
Tummala, PavanPavan.Tummala (at) dlr.dehttps://orcid.org/0000-0002-3460-8044NICHT SPEZIFIZIERT
Wilken, JaschaJascha.Wilken (at) dlr.dehttps://orcid.org/0000-0001-5748-1261NICHT SPEZIFIZIERT
Dumont, EtienneEtienne.Dumont (at) dlr.dehttps://orcid.org/0000-0003-4618-0572NICHT SPEZIFIZIERT
Ertl, MoritzMoritz.Ertl (at) dlr.dehttps://orcid.org/0000-0002-1900-5122NICHT SPEZIFIZIERT
Ecker, TobiasTobias.Ecker (at) dlr.dehttps://orcid.org/0000-0001-7134-1185NICHT SPEZIFIZIERT
Riehmer, JohannesJohannes.Riehmer (at) dlr.deNICHT SPEZIFIZIERTNICHT SPEZIFIZIERT
Klevanski, JosefJosef.Klevanski (at) dlr.dehttps://orcid.org/0009-0002-4336-1116NICHT SPEZIFIZIERT
Datum:März 2023
Erschienen in:2022 IEEE Aerospace Conference, AERO 2022
Referierte Publikation:Ja
Open Access:Ja
Gold Open Access:Nein
In SCOPUS:Ja
In ISI Web of Science:Ja
ISSN:1095-323X
ISBN:978-166543760-8
Status:eingereichter Beitrag
Stichwörter:CALLISTO, Reusable Launch Vehicle (RLV), Vertical-Takeoff Vertical-Landing (VTVL), Aerodynamic Database (AEDB), Uncertainty Estimation, Bayesian Inference, Gaussian Process
Veranstaltungstitel:IEEE Aerospace Conference
Veranstaltungsort:Big Sky, Montana, USA
Veranstaltungsart:internationale Konferenz
Veranstaltungsdatum:04.-11. März 2023
HGF - Forschungsbereich:Luftfahrt, Raumfahrt und Verkehr
HGF - Programm:Raumfahrt
HGF - Programmthema:Raumtransport
DLR - Schwerpunkt:Raumfahrt
DLR - Forschungsgebiet:R RP - Raumtransport
DLR - Teilgebiet (Projekt, Vorhaben):R - Projekt CALLISTO [RP]
Standort: Bremen , Göttingen , Köln-Porz
Institute & Einrichtungen:Institut für Raumfahrtsysteme > Systemanalyse Raumtransport
Institut für Raumfahrtsysteme > Systementwicklung und Projektbüro
Institut für Aerodynamik und Strömungstechnik
Hinterlegt von: Krummen, Sven
Hinterlegt am:21 Dez 2022 11:56
Letzte Änderung:27 Okt 2023 15:29

Verfügbare Versionen dieses Eintrags

Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags

Blättern
Suchen
Hilfe & Kontakt
Informationen
electronic library verwendet EPrints 3.3.12
Gestaltung Webseite und Datenbank: Copyright © Deutsches Zentrum für Luft- und Raumfahrt (DLR). Alle Rechte vorbehalten.