Padiya, Trupti und Löffler, Frank und Klan, Friederike (2022) Need for Design Patterns: Interoperability Issues and Modelling Challenges for Observational Data. Cornell University. [sonstige Veröffentlichung]
PDF
- Nur DLR-intern zugänglich
267kB |
Offizielle URL: https://arxiv.org/abs/2208.12480
Kurzfassung
Interoperability issues concerning observational data have gained attention in recent times. Automated data integration is important when it comes to the scientific analysis of observational data from different sources. However, it is hampered by various data interoperability issues. We focus exclusively on semantic interoperability issues for observational characteristics. We propose a use-case-driven approach to identify general classes of interoperability issues. In this paper, this is exemplarily done for the use-case of citizen science fireball observations. We derive key concepts for the identified interoperability issues that are generalizable to observational data in other fields of science. These key concepts contain several modeling challenges, and we broadly describe each modeling challenges associated with its interoperability issue. We believe, that addressing these challenges with a set of ontology design patterns will be an effective means for unified semantic modeling, paving the way for a unified approach for resolving interoperability issues in observational data. We demonstrate this with one design pattern, highlighting the importance and need for ontology design patterns for observational data, and leave the remaining patterns to future work. Our paper thus describes interoperability issues along with modeling challenges as a starting point for developing a set of extensible and reusable design patterns.
elib-URL des Eintrags: | https://elib.dlr.de/192742/ | ||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Dokumentart: | sonstige Veröffentlichung | ||||||||||||||||
Titel: | Need for Design Patterns: Interoperability Issues and Modelling Challenges for Observational Data | ||||||||||||||||
Autoren: |
| ||||||||||||||||
Datum: | 2022 | ||||||||||||||||
Referierte Publikation: | Nein | ||||||||||||||||
Open Access: | Nein | ||||||||||||||||
Verlag: | Cornell University | ||||||||||||||||
Name der Reihe: | arXiv | ||||||||||||||||
Status: | veröffentlicht | ||||||||||||||||
Stichwörter: | artificial intelligence, symbolic AI, semantic modeling, observational data | ||||||||||||||||
HGF - Forschungsbereich: | Luftfahrt, Raumfahrt und Verkehr | ||||||||||||||||
HGF - Programm: | Raumfahrt | ||||||||||||||||
HGF - Programmthema: | keine Zuordnung | ||||||||||||||||
DLR - Schwerpunkt: | Raumfahrt | ||||||||||||||||
DLR - Forschungsgebiet: | R - keine Zuordnung | ||||||||||||||||
DLR - Teilgebiet (Projekt, Vorhaben): | R - keine Zuordnung | ||||||||||||||||
Standort: | Jena | ||||||||||||||||
Institute & Einrichtungen: | Institut für Datenwissenschaften > Datengewinnung und -mobilisierung | ||||||||||||||||
Hinterlegt von: | Klan, Dr. Friederike | ||||||||||||||||
Hinterlegt am: | 17 Jan 2023 13:21 | ||||||||||||||||
Letzte Änderung: | 17 Jan 2023 13:21 |
Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags