Mousavi, Seyed Hamidreza und Azimi, Seyed Majid (2022) A Deep Curriculum Learner in an Active Learning Cycle for Polsar Image Classification. In: 2022 IEEE International Geoscience and Remote Sensing Symposium, IGARSS 2022, Seiten 88-91. IEEE. IGARSS 2022, 2022-07-17 - 2022-07-22, Kuala Lumpur, Malaysia. doi: 10.1109/IGARSS46834.2022.9884910. ISBN 978-166542792-0.
Dieses Archiv kann nicht den Volltext zur Verfügung stellen.
Offizielle URL: https://ieeexplore.ieee.org/document/9884910
Kurzfassung
The integration of deep learning and active learning has achieved great success in polarimetric synthetic aperture radar (PolSAR) image classification. However, the training samples provided by the active learning approach are inade-quate to promote the performance of deep learning methods. Also, in the initial learning stages, querying a small amount of informative and complex samples, which are plagued by significant speckle noise, not only increases the risk of overfitting, but also makes the further annotations of less importance. To alleviate these problems, by utilization of curriculum learning (CL), we propose a novel classification method for PolSAR images, considering the complexity of informative samples before applying them to the deep learning model. Furthermore, we develop a new lightweight 3D convolutional neural network with high-level feature extraction ability while having a very low computational cost. Experimental results with the two PolSAR benchmark data sets of AIRSAR Flevoland and ESAR Oberpfaffenhofen indicate our proposed method achieved the state-of-the-art classification results with a significantly smaller amount of training data.
elib-URL des Eintrags: | https://elib.dlr.de/192701/ | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Dokumentart: | Konferenzbeitrag (Vortrag) | ||||||||||||
Titel: | A Deep Curriculum Learner in an Active Learning Cycle for Polsar Image Classification | ||||||||||||
Autoren: |
| ||||||||||||
Datum: | 2022 | ||||||||||||
Erschienen in: | 2022 IEEE International Geoscience and Remote Sensing Symposium, IGARSS 2022 | ||||||||||||
Referierte Publikation: | Ja | ||||||||||||
Open Access: | Nein | ||||||||||||
Gold Open Access: | Nein | ||||||||||||
In SCOPUS: | Ja | ||||||||||||
In ISI Web of Science: | Ja | ||||||||||||
DOI: | 10.1109/IGARSS46834.2022.9884910 | ||||||||||||
Seitenbereich: | Seiten 88-91 | ||||||||||||
Verlag: | IEEE | ||||||||||||
ISBN: | 978-166542792-0 | ||||||||||||
Status: | veröffentlicht | ||||||||||||
Stichwörter: | Active learning, Deep curriculum learning, SAR polarimetry data classification, Lightweight 3D convolution | ||||||||||||
Veranstaltungstitel: | IGARSS 2022 | ||||||||||||
Veranstaltungsort: | Kuala Lumpur, Malaysia | ||||||||||||
Veranstaltungsart: | internationale Konferenz | ||||||||||||
Veranstaltungsbeginn: | 17 Juli 2022 | ||||||||||||
Veranstaltungsende: | 22 Juli 2022 | ||||||||||||
Veranstalter : | IEEE | ||||||||||||
HGF - Forschungsbereich: | Luftfahrt, Raumfahrt und Verkehr | ||||||||||||
HGF - Programm: | Verkehr | ||||||||||||
HGF - Programmthema: | Straßenverkehr | ||||||||||||
DLR - Schwerpunkt: | Verkehr | ||||||||||||
DLR - Forschungsgebiet: | V ST Straßenverkehr | ||||||||||||
DLR - Teilgebiet (Projekt, Vorhaben): | V - Digitaler Atlas 2.0 | ||||||||||||
Standort: | Oberpfaffenhofen | ||||||||||||
Institute & Einrichtungen: | Institut für Methodik der Fernerkundung > Photogrammetrie und Bildanalyse | ||||||||||||
Hinterlegt von: | Bahmanyar, Gholamreza | ||||||||||||
Hinterlegt am: | 22 Dez 2022 09:03 | ||||||||||||
Letzte Änderung: | 24 Apr 2024 20:53 |
Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags