elib
DLR-Header
DLR-Logo -> http://www.dlr.de
DLR Portal Home | Impressum | Datenschutz | Kontakt | English
Schriftgröße: [-] Text [+]

Discontinuous Galerkin Spectral Element Methods for Astrophysical Flows in Multi-physics Applications

Markert, Johannes (2022) Discontinuous Galerkin Spectral Element Methods for Astrophysical Flows in Multi-physics Applications. Dissertation, Universität zu Köln.

[img] PDF
20MB

Offizielle URL: https://kups.ub.uni-koeln.de/61694/

Kurzfassung

In engineering applications, discontinuous Galerkin methods (DG) have been proven to be a powerful and flexible class of high order methods for problems in computational fluid dynamics. However, the potential benefits of DG for applications in astrophysical contexts is still relatively unexplored in its entirety. To this day, a decent number of studies surveying DG for astrophysical flows have been conducted. But the adoption of DG by the astrophysics community is just beginning to gain traction and integration of DG into established, multi-physics simulation frameworks for comprehensive astrophysical modeling is still lacking. It is our firm believe, that the full potential of novel approaches for numerically solving the fluid equations only shows under the pressure of real-world simulations with all aspects of multi-physics, challenging flow configurations, resolution and runtime constraints, and efficiency metrics on high-performance systems involved. Thus, we see the pressing need to propel DG from the well-trodden path of cataloguing test results under "optimal" laboratory conditions towards the harsh and unforgiving environment of large-scale astrophysics simulations. Consequently, the core of this work is the development and deployment of a robust DG scheme solving the ideal magneto-hydrodynamics equations with multiple species on three-dimensional Cartesian grids with adaptive mesh refinement. We chose to implement DG within the venerable simulation framework FLASH, with a specific focus on multi-physics problems in astrophysics. This entails modifications of the vanilla DG scheme to make it fit seamlessly within FLASH in such a way that all other physics modules can be naturally coupled without additional implementation overhead. A key ingredient is that our DG scheme uses mean value data organized into blocks - the central data structure in FLASH. Having the opportunity to work on mean values, allows us to rely on a rock-solid, monotone Finite Volume (FV) scheme as "backup" whenever the high order DG method fails in cases when the flow gets too harsh. Finding ways to combine the two schemes in a fail-safe manner without loosing primary conservation while still maintaining high order accuracy for smooth, well-resolved flows involves a series of careful considerations, which we document in this thesis. The result of our work is a novel shock capturing scheme - a hybrid between FV and DG - with smooth transitions between low and high order fluxes according to solution smoothness estimators. We present extensive validations and test cases, specifically its interaction with multi-physics modules in FLASH such as (self-)gravity and radiative transfer. We also investigate the benefits and pitfalls of integrating end-to-end entropy stability into our numerical scheme, with special focus on highly compressible turbulent flows and shocks. Our implementation of DG in FLASH allows us to conduct preliminary yet comprehensive astrophysics simulations proving that our new solver is ready for assessments and investigations by the astrophysics community.

elib-URL des Eintrags:https://elib.dlr.de/192216/
Dokumentart:Hochschulschrift (Dissertation)
Titel:Discontinuous Galerkin Spectral Element Methods for Astrophysical Flows in Multi-physics Applications
Autoren:
AutorenInstitution oder E-Mail-AdresseAutoren-ORCID-iDORCID Put Code
Markert, JohannesDLR, Institute of Software Technologieshttps://orcid.org/0000-0001-6297-9494NICHT SPEZIFIZIERT
Datum:2022
Erschienen in:KUPS - Kölner UniversitätsPublikationsServer
Referierte Publikation:Ja
Open Access:Ja
Seitenanzahl:288
Status:veröffentlicht
Stichwörter:computational fluid dynamics, discontinuous Galerkin, multi-physics, astrophysics, shock capturing
Institution:Universität zu Köln
Abteilung:Department of Mathematics and Computer Science
HGF - Forschungsbereich:keine Zuordnung
HGF - Programm:keine Zuordnung
HGF - Programmthema:keine Zuordnung
DLR - Schwerpunkt:Digitalisierung
DLR - Forschungsgebiet:D DAT - Daten
DLR - Teilgebiet (Projekt, Vorhaben):D - VisPlore
Standort: Köln-Porz
Institute & Einrichtungen:Institut für Softwaretechnologie > High-Performance Computing
Institut für Softwaretechnologie
Hinterlegt von: Markert, Johannes
Hinterlegt am:20 Dez 2022 10:55
Letzte Änderung:23 Dez 2022 10:03

Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags

Blättern
Suchen
Hilfe & Kontakt
Informationen
electronic library verwendet EPrints 3.3.12
Gestaltung Webseite und Datenbank: Copyright © Deutsches Zentrum für Luft- und Raumfahrt (DLR). Alle Rechte vorbehalten.