elib
DLR-Header
DLR-Logo -> http://www.dlr.de
DLR Portal Home | Impressum | Datenschutz | Kontakt | English
Schriftgröße: [-] Text [+]

Non-Stoichiometric Redox Thermochemical Energy Storage Analysis for High Temperature Applications

Roeder, Timo und Risthaus, Kai und Monnerie, Nathalie und Sattler, Christian (2022) Non-Stoichiometric Redox Thermochemical Energy Storage Analysis for High Temperature Applications. Energies, 15 (5982). Multidisciplinary Digital Publishing Institute (MDPI). doi: 10.3390/en15165982. ISSN 1996-1073.

[img] PDF - Verlagsversion (veröffentlichte Fassung)
5MB

Offizielle URL: https://www.mdpi.com/1996-1073/15/16/5982

Kurzfassung

Concentrated solar power is capable of providing high-temperature process streams to different applications. One promising application is the high-temperature electrolysis process demanding steam and air above 800 °C. To overcome the intermittence of solar energy, energy storage is required. Currently, thermal energy at such temperatures can be stored predominately as sensible heat in packed beds. However, such storage suffers from a loss of usable storage capacity after several cycles. To improve such storage, a one-dimensional packed bed thermal energy storage model using air as a heat transfer medium is set up and used to investigate and quantify the benefit of the incorporation of different thermochemical materials from the class of perovskites. Perovskites undergo a non-stoichiometric reaction extension which offers the utilization of thermochemical heat over a larger temperature range. Three different perovskites were considered: SrFeO3, CaMnO3 and Ca0.8Sr0.2MnO3. In total, 15 vol% of sensible energy storage has been replaced by one perovskite and different positions of the reactive material are analyzed. The effect of reactive heat on storage performance and thermal degradation over 15 consecutive charging and discharging cycles is studied. Based on the selected variation and reactive material, storage capacity and useful energy capacity are increased. The partial replacement close to the cold inlet/outlet of the storage system can increase the overall storage capacity by 10.42%. To fully utilize the advantages of thermochemical material, suitable operation conditions and a fitting placement of the material are vital.

elib-URL des Eintrags:https://elib.dlr.de/192115/
Dokumentart:Zeitschriftenbeitrag
Titel:Non-Stoichiometric Redox Thermochemical Energy Storage Analysis for High Temperature Applications
Autoren:
AutorenInstitution oder E-Mail-AdresseAutoren-ORCID-iDORCID Put Code
Roeder, TimoTimo.Roeder (at) dlr.deNICHT SPEZIFIZIERTNICHT SPEZIFIZIERT
Risthaus, KaiKai.Risthaus (at) dlr.deNICHT SPEZIFIZIERTNICHT SPEZIFIZIERT
Monnerie, NathalieNathalie.Monnerie (at) dlr.dehttps://orcid.org/0000-0002-0220-6665NICHT SPEZIFIZIERT
Sattler, ChristianChristian.Sattler (at) dlr.dehttps://orcid.org/0000-0002-4314-1124NICHT SPEZIFIZIERT
Datum:18 August 2022
Erschienen in:Energies
Referierte Publikation:Ja
Open Access:Ja
Gold Open Access:Ja
In SCOPUS:Ja
In ISI Web of Science:Ja
Band:15
DOI:10.3390/en15165982
Verlag:Multidisciplinary Digital Publishing Institute (MDPI)
ISSN:1996-1073
Status:veröffentlicht
Stichwörter:thermal energy storage; thermochemical energy; packed bed; perovskites; solar energy
HGF - Forschungsbereich:Energie
HGF - Programm:Materialien und Technologien für die Energiewende
HGF - Programmthema:Chemische Energieträger
DLR - Schwerpunkt:Energie
DLR - Forschungsgebiet:E SW - Solar- und Windenergie
DLR - Teilgebiet (Projekt, Vorhaben):E - Solare Brennstoffe
Standort: Jülich , Köln-Porz
Institute & Einrichtungen:Institut für Future Fuels
Institut für Future Fuels > Bewertung solarer Produktionsverfahren
Hinterlegt von: Bülow, Mark
Hinterlegt am:14 Dez 2022 09:34
Letzte Änderung:14 Dez 2022 09:34

Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags

Blättern
Suchen
Hilfe & Kontakt
Informationen
electronic library verwendet EPrints 3.3.12
Gestaltung Webseite und Datenbank: Copyright © Deutsches Zentrum für Luft- und Raumfahrt (DLR). Alle Rechte vorbehalten.