Sica, Francescopaolo und Pulella, Andrea und Lopez, Carlos Villamil und Anglberger, Harald und Hänsch, Ronny (2022) Generalization in Object Recognition from SAR Imagery. In: 2022 IEEE International Geoscience and Remote Sensing Symposium, IGARSS 2022, Seiten 1007-1010. IEEE International Geoscience and Remote Sensing Symposium (IGARSS), 2022-07-17 - 2022-07-22, Kuala Lumpur, Malaysia. doi: 10.1109/IGARSS46834.2022.9884427. ISBN 978-166542792-0.
Dieses Archiv kann nicht den Volltext zur Verfügung stellen.
Offizielle URL: https://ieeexplore.ieee.org/abstract/document/9884427
Kurzfassung
Object recognition in synthetic aperture radar images is a well studied topic that has gained a significant amount of attention within the last decades. Modern approaches are based on machine learning, i.e. deep learning, and often show excellent performance. What is so far missing in the literature is a study dedicated to the generalization capabilities of object recognition approaches, i.e. how well a given system can be transferred to new and previously unseen data. In this paper, the proposed recognition model is trained and tested on a unique dataset of 25 high-resolution TerraSAR-X images (X-band), acquired over four different airports in Staring Spotlight mode. We show how classification performance changes for different application scenarios which require different training and evaluation setups.
elib-URL des Eintrags: | https://elib.dlr.de/191313/ | ||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Dokumentart: | Konferenzbeitrag (Vortrag) | ||||||||||||||||||||||||
Titel: | Generalization in Object Recognition from SAR Imagery | ||||||||||||||||||||||||
Autoren: |
| ||||||||||||||||||||||||
Datum: | Juli 2022 | ||||||||||||||||||||||||
Erschienen in: | 2022 IEEE International Geoscience and Remote Sensing Symposium, IGARSS 2022 | ||||||||||||||||||||||||
Referierte Publikation: | Ja | ||||||||||||||||||||||||
Open Access: | Nein | ||||||||||||||||||||||||
Gold Open Access: | Nein | ||||||||||||||||||||||||
In SCOPUS: | Ja | ||||||||||||||||||||||||
In ISI Web of Science: | Ja | ||||||||||||||||||||||||
DOI: | 10.1109/IGARSS46834.2022.9884427 | ||||||||||||||||||||||||
Seitenbereich: | Seiten 1007-1010 | ||||||||||||||||||||||||
ISBN: | 978-166542792-0 | ||||||||||||||||||||||||
Status: | veröffentlicht | ||||||||||||||||||||||||
Stichwörter: | Deep Learning, Object Detection | ||||||||||||||||||||||||
Veranstaltungstitel: | IEEE International Geoscience and Remote Sensing Symposium (IGARSS) | ||||||||||||||||||||||||
Veranstaltungsort: | Kuala Lumpur, Malaysia | ||||||||||||||||||||||||
Veranstaltungsart: | internationale Konferenz | ||||||||||||||||||||||||
Veranstaltungsbeginn: | 17 Juli 2022 | ||||||||||||||||||||||||
Veranstaltungsende: | 22 Juli 2022 | ||||||||||||||||||||||||
HGF - Forschungsbereich: | Luftfahrt, Raumfahrt und Verkehr | ||||||||||||||||||||||||
HGF - Programm: | Raumfahrt | ||||||||||||||||||||||||
HGF - Programmthema: | Erdbeobachtung | ||||||||||||||||||||||||
DLR - Schwerpunkt: | Raumfahrt | ||||||||||||||||||||||||
DLR - Forschungsgebiet: | R EO - Erdbeobachtung | ||||||||||||||||||||||||
DLR - Teilgebiet (Projekt, Vorhaben): | R - Künstliche Intelligenz | ||||||||||||||||||||||||
Standort: | Oberpfaffenhofen | ||||||||||||||||||||||||
Institute & Einrichtungen: | Institut für Hochfrequenztechnik und Radarsysteme > SAR-Technologie Institut für Hochfrequenztechnik und Radarsysteme > Aufklärung und Sicherheit | ||||||||||||||||||||||||
Hinterlegt von: | Hänsch, Ronny | ||||||||||||||||||||||||
Hinterlegt am: | 01 Dez 2022 13:18 | ||||||||||||||||||||||||
Letzte Änderung: | 24 Apr 2024 20:52 |
Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags