D'Amore, Mario und Padovan, Sebastiano (2022) Automated surface mapping via unsupervised learning and classification of Mercury Visible–Near-Infrared reflectance spectra. In: Machine Learning for Planetary Science Elsevier. Seiten 131-149. doi: 10.1016/B978-0-12-818721-0.00016-1. ISBN 9780128187227.
PDF
- Nur DLR-intern zugänglich
2MB |
Offizielle URL: https://www.elsevier.com/books/machine-learning-for-planetary-science/helbert/978-0-12-818721-0
Kurzfassung
In this work we apply unsupervised learning techniques for dimensionality reduction and clustering to remote sensing hyperspectral Visible-Near Infrared (VNIR) reflectance spectra datasets of the planet Mercury obtained by the MErcury Surface, Space ENvironment, GEochemistry, and Ranging (MESSENGER) mission. This approach produces cluster maps, which group different regions of the surface based on the properties of their spectra as inferred during the learning process. While results depend on the choice of model parameters and available data, comparison to expert-generated geologic maps shows that some clusters correspond to expert-mapped classes such as smooth plains on Mercury. These automatically generated maps can serve as a starting point or comparison for traditional methods of creating geologic maps based on spectral patterns. The code and data used in this work is available as Python Jupyter Notebook on the github public repository MESSENGER-Mercury-Surface-Cassification-Unsupervised_DLR1 funded by the European Union's Horizon 2020 grant No 871149.
elib-URL des Eintrags: | https://elib.dlr.de/191267/ | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Dokumentart: | Beitrag in einem Lehr- oder Fachbuch | ||||||||||||
Titel: | Automated surface mapping via unsupervised learning and classification of Mercury Visible–Near-Infrared reflectance spectra | ||||||||||||
Autoren: |
| ||||||||||||
Datum: | 25 März 2022 | ||||||||||||
Erschienen in: | Machine Learning for Planetary Science | ||||||||||||
Referierte Publikation: | Ja | ||||||||||||
Open Access: | Nein | ||||||||||||
Gold Open Access: | Nein | ||||||||||||
In SCOPUS: | Nein | ||||||||||||
In ISI Web of Science: | Nein | ||||||||||||
DOI: | 10.1016/B978-0-12-818721-0.00016-1 | ||||||||||||
Seitenbereich: | Seiten 131-149 | ||||||||||||
Verlag: | Elsevier | ||||||||||||
ISBN: | 9780128187227 | ||||||||||||
Status: | veröffentlicht | ||||||||||||
Stichwörter: | Mercury, Surface, Cassification, Unsupervised | ||||||||||||
HGF - Forschungsbereich: | Luftfahrt, Raumfahrt und Verkehr | ||||||||||||
HGF - Programm: | Raumfahrt | ||||||||||||
HGF - Programmthema: | Erforschung des Weltraums | ||||||||||||
DLR - Schwerpunkt: | Raumfahrt | ||||||||||||
DLR - Forschungsgebiet: | R EW - Erforschung des Weltraums | ||||||||||||
DLR - Teilgebiet (Projekt, Vorhaben): | R - Projekt BepiColombo - MERTIS und BELA | ||||||||||||
Standort: | Berlin-Adlershof | ||||||||||||
Institute & Einrichtungen: | Institut für Planetenforschung > Planetare Labore Institut für Planetenforschung > Planetenphysik | ||||||||||||
Hinterlegt von: | Amore, Dr. Mario | ||||||||||||
Hinterlegt am: | 01 Dez 2022 09:37 | ||||||||||||
Letzte Änderung: | 18 Okt 2023 13:32 |
Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags