Jentzsch, Sophie Freya und Turan, Cigdem (2022) Gender Bias in BERT-Measuring and Analysing Biases through Sentiment Rating in a Realistic Downstream Classification Task. In: 4th Workshop on Gender Bias in Natural Language Processing, GeBNLP 2022, Seiten 184-199. Association for Computational Linguistics. 4th Workshop on Gender Bias in Natural Language Processing (GeBNLP), 2022-07-10 - 2022-07-15, Seattle, USA. doi: 10.18653/v1/2022.gebnlp-1.20. ISBN 9781955917681.
PDF
- Nur DLR-intern zugänglich
1MB |
Offizielle URL: https://aclanthology.org/2022.gebnlp-1.20/
Kurzfassung
Pretrained language models are publicly available and constantly finetuned for various real-life applications. As they become capable of grasping complex contextual information, harmful biases are likely increasingly intertwined with those models. This paper analyses gender bias in BERT models with two main contributions: First, a novel bias measure is introduced, defining biases as the difference in sentiment valuation of female and male sample versions. Second, we comprehensively analyse BERT?s biases on the example of a realistic IMDB movie classifier. By systematically varying elements of the training pipeline, we can conclude regarding their impact on the final model bias. Seven different public BERT models in nine training conditions, i.e. 63 models in total, are compared. Almost all conditions yield significant gender biases. Results indicate that reflected biases stem from public BERT models rather than task-specific data, emphasising the weight of responsible usage.
elib-URL des Eintrags: | https://elib.dlr.de/190984/ | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Dokumentart: | Konferenzbeitrag (Poster) | ||||||||||||
Titel: | Gender Bias in BERT-Measuring and Analysing Biases through Sentiment Rating in a Realistic Downstream Classification Task | ||||||||||||
Autoren: |
| ||||||||||||
Datum: | Juli 2022 | ||||||||||||
Erschienen in: | 4th Workshop on Gender Bias in Natural Language Processing, GeBNLP 2022 | ||||||||||||
Referierte Publikation: | Ja | ||||||||||||
Open Access: | Nein | ||||||||||||
Gold Open Access: | Nein | ||||||||||||
In SCOPUS: | Ja | ||||||||||||
In ISI Web of Science: | Nein | ||||||||||||
DOI: | 10.18653/v1/2022.gebnlp-1.20 | ||||||||||||
Seitenbereich: | Seiten 184-199 | ||||||||||||
Verlag: | Association for Computational Linguistics | ||||||||||||
ISBN: | 9781955917681 | ||||||||||||
Status: | veröffentlicht | ||||||||||||
Stichwörter: | Gender Bias Transformer Models BERT Natural Language Processing | ||||||||||||
Veranstaltungstitel: | 4th Workshop on Gender Bias in Natural Language Processing (GeBNLP) | ||||||||||||
Veranstaltungsort: | Seattle, USA | ||||||||||||
Veranstaltungsart: | Workshop | ||||||||||||
Veranstaltungsbeginn: | 10 Juli 2022 | ||||||||||||
Veranstaltungsende: | 15 Juli 2022 | ||||||||||||
HGF - Forschungsbereich: | Luftfahrt, Raumfahrt und Verkehr | ||||||||||||
HGF - Programm: | Raumfahrt | ||||||||||||
HGF - Programmthema: | Technik für Raumfahrtsysteme | ||||||||||||
DLR - Schwerpunkt: | Raumfahrt | ||||||||||||
DLR - Forschungsgebiet: | R SY - Technik für Raumfahrtsysteme | ||||||||||||
DLR - Teilgebiet (Projekt, Vorhaben): | R - Aufgaben SISTEC | ||||||||||||
Standort: | Köln-Porz | ||||||||||||
Institute & Einrichtungen: | Institut für Softwaretechnologie | ||||||||||||
Hinterlegt von: | Jentzsch, Sophie Freya | ||||||||||||
Hinterlegt am: | 13 Dez 2022 11:07 | ||||||||||||
Letzte Änderung: | 13 Nov 2024 15:22 |
Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags