Griem, Lars und Greß, Alexander und Altschuh, Patrick und Koeppe, Arnd und Feser, Thomas und Selzer, Michael und Nestler, Britta und Beeh, Elmar (2022) Identifying structure-property linkages in polyurethane foams to characterize their mechanical properties using machine learning. Material Science and Engineering Congress 2022, 2022-09-27 - 2022-09-29, Darmstadt.
Dieses Archiv kann nicht den Volltext zur Verfügung stellen.
Kurzfassung
The design of sandwich composites with a polyurethane foam core and a metallic face material, requires the knowledge of the mechanical properties of the constituent materials. These are generally known for metallic materials, but have to be determined for plastic foams, usually via experiments as they are greatly dependent on the foam‘s microstructure. In order to substitute these time-consuming and cost-intensive experiments, this work presents a procedure for characterising the mechanical properties of plastic foams by identifying structure-property linkages using machine learning. The basis for this are experimentally validated simulations of reconstructed and algorithm-based generated digital-twins of polyurethane foam structures. The microstructures of these generated foam structures are varied systematically to create an information-rich data-basis thereby obtaining an accurate and robust machine-learning tool.
elib-URL des Eintrags: | https://elib.dlr.de/190745/ | ||||||||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Dokumentart: | Konferenzbeitrag (Vortrag) | ||||||||||||||||||||||||||||||||||||
Titel: | Identifying structure-property linkages in polyurethane foams to characterize their mechanical properties using machine learning | ||||||||||||||||||||||||||||||||||||
Autoren: |
| ||||||||||||||||||||||||||||||||||||
Datum: | September 2022 | ||||||||||||||||||||||||||||||||||||
Referierte Publikation: | Ja | ||||||||||||||||||||||||||||||||||||
Open Access: | Nein | ||||||||||||||||||||||||||||||||||||
Gold Open Access: | Nein | ||||||||||||||||||||||||||||||||||||
In SCOPUS: | Nein | ||||||||||||||||||||||||||||||||||||
In ISI Web of Science: | Nein | ||||||||||||||||||||||||||||||||||||
Status: | veröffentlicht | ||||||||||||||||||||||||||||||||||||
Stichwörter: | machine learning, foam, PU-foam, structure-property linkage, microstructure | ||||||||||||||||||||||||||||||||||||
Veranstaltungstitel: | Material Science and Engineering Congress 2022 | ||||||||||||||||||||||||||||||||||||
Veranstaltungsort: | Darmstadt | ||||||||||||||||||||||||||||||||||||
Veranstaltungsart: | internationale Konferenz | ||||||||||||||||||||||||||||||||||||
Veranstaltungsbeginn: | 27 September 2022 | ||||||||||||||||||||||||||||||||||||
Veranstaltungsende: | 29 September 2022 | ||||||||||||||||||||||||||||||||||||
Veranstalter : | Deutsche Gesellschaft für Materialkunde e.V. | ||||||||||||||||||||||||||||||||||||
HGF - Forschungsbereich: | Luftfahrt, Raumfahrt und Verkehr | ||||||||||||||||||||||||||||||||||||
HGF - Programm: | Verkehr | ||||||||||||||||||||||||||||||||||||
HGF - Programmthema: | Verkehrssystem | ||||||||||||||||||||||||||||||||||||
DLR - Schwerpunkt: | Verkehr | ||||||||||||||||||||||||||||||||||||
DLR - Forschungsgebiet: | V VS - Verkehrssystem | ||||||||||||||||||||||||||||||||||||
DLR - Teilgebiet (Projekt, Vorhaben): | V - Energie und Verkehr (alt) | ||||||||||||||||||||||||||||||||||||
Standort: | Stuttgart | ||||||||||||||||||||||||||||||||||||
Institute & Einrichtungen: | Institut für Fahrzeugkonzepte > Werkstoff- und Verfahrensanwendungen Gesamtfahrzeug | ||||||||||||||||||||||||||||||||||||
Hinterlegt von: | Greß, Alexander | ||||||||||||||||||||||||||||||||||||
Hinterlegt am: | 28 Nov 2022 13:07 | ||||||||||||||||||||||||||||||||||||
Letzte Änderung: | 24 Apr 2024 20:52 |
Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags