elib
DLR-Header
DLR-Logo -> http://www.dlr.de
DLR Portal Home | Impressum | Datenschutz | Kontakt | English
Schriftgröße: [-] Text [+]

Improving soil organic carbon predictions from a Sentinel–2 soil composite by assessing surface conditions and uncertainties

Dvorakova, Klara und Heiden, Uta und Pepers, Karin und Staats, Gijs und van Os, Gera und van Wesemael, Bas (2023) Improving soil organic carbon predictions from a Sentinel–2 soil composite by assessing surface conditions and uncertainties. Geoderma, 429 (116128), Seite 1161281. Elsevier. doi: 10.1016/j.geoderma.2022.116128. ISSN 0016-7061.

[img] PDF - Verlagsversion (veröffentlichte Fassung)
16MB

Offizielle URL: https://www.sciencedirect.com/science/article/pii/S0016706122004359

Kurzfassung

Soil organic carbon (SOC) prediction from remote sensing is often hindered by disturbing factors at the soil surface, such as photosynthetic active and non–photosynthetic active vegetation, variation in soil moisture or surface roughness. With the increasing amount of freely available satellite data, recent studies have focused on stabilizing the soil reflectance by building reflectance composites using time series of images. Although composite imagery has demonstrated its potential in SOC prediction, it is still not well established if the resulting composite spectra mirror the reflectance fingerprint of the optimal conditions to predict topsoil properties (i.e. a smooth, dry and bare soil). We have collected 303 photos of soil surfaces in the Belgian loam belt where five main classes of surface conditions were distinguished: smooth seeded soils, soil crusts, partial cover by a growing crop, moist soils and crop residue cover. Reflectance spectra were then extracted from the Sentinel–2 images coinciding with the date of the photos. After the growing crop was removed by an NDVI < 0.25, the Normalized Burn Ratio (NBR2) was calculated to characterize the soil surface, and a threshold of NBR2 < 0.05 was found to be able to separate dry bare soils from soils in unfavorable conditions i.e. wet soils and soils covered by crop residues. Additionally, we found that normalizing the spectra (i.e. dividing the reflectance of each band by the mean reflectance of all spectral bands) allows for cancelling the albedo shift between soil crusts and smooth soils in seed–bed conditions. We then built the exposed soil composite from Sentinel–2 imagery for southern Belgium and part of Noord-Holland and Flevoland in the Netherlands (covering the spring periods of 2016–2021). We used the mean spectra per pixel to predict SOC content by means of a Partial Least Squares Regression Model (PLSR) with 10–fold cross–validation. The uncertainty of the models was assessed via the prediction interval ratio (PIR). The cross validation of the model gave satisfactory results (mean of 100 bootstraps: model efficiency coefficient (MEC) = 0.48 ± 0.07, RMSE = 3.5 ± 0.3 g C kg–1, RPD = 1.4 ± 0.1 and RPIQ = 1.9 ± 0.3). The resulting SOC prediction maps show that the uncertainty of prediction decreases when the number of scenes per pixel increases, and reaches a minimum when at least six scenes per pixel are used (mean PIR of all pixels is 12.4 g C kg–1, while mean SOC predicted is 14.1 g C kg–1). The results of a validation against an independent data set showed a median difference of 0.5 g C kg–1 ± 2.8 g C kg–1 SOC between the measured (average SOC content 13.5 g C kg–1) and predicted SOC contents at field scale. Overall, this compositing method shows both realistic within field and regional SOC patterns.

elib-URL des Eintrags:https://elib.dlr.de/190696/
Dokumentart:Zeitschriftenbeitrag
Titel:Improving soil organic carbon predictions from a Sentinel–2 soil composite by assessing surface conditions and uncertainties
Autoren:
AutorenInstitution oder E-Mail-AdresseAutoren-ORCID-iDORCID Put Code
Dvorakova, KlaraGeorges Lemaître Centre for Earth and Climate Research, Earth and Life Institute, Université Catholique de LouvainNICHT SPEZIFIZIERTNICHT SPEZIFIZIERT
Heiden, Utauta.heiden (at) dlr.dehttps://orcid.org/0000-0002-3865-1912NICHT SPEZIFIZIERT
Pepers, KarinAeres University of Applied Sciences, Dronten, The NetherlandsNICHT SPEZIFIZIERTNICHT SPEZIFIZIERT
Staats, GijsAeres University of Applied Sciences, Dronten, The NetherlandsNICHT SPEZIFIZIERTNICHT SPEZIFIZIERT
van Os, GeraAeres University of Applied Sciences, Dronten, The NetherlandsNICHT SPEZIFIZIERTNICHT SPEZIFIZIERT
van Wesemael, BasGeorges Lemaître Centre for Earth and Climate Research, Earth and Life Institute, Université Catholique de LouvainNICHT SPEZIFIZIERTNICHT SPEZIFIZIERT
Datum:Januar 2023
Erschienen in:Geoderma
Referierte Publikation:Ja
Open Access:Ja
Gold Open Access:Nein
In SCOPUS:Ja
In ISI Web of Science:Ja
Band:429
DOI:10.1016/j.geoderma.2022.116128
Seitenbereich:Seite 1161281
Verlag:Elsevier
ISSN:0016-7061
Status:veröffentlicht
Stichwörter:Soil reflectance composite, multispectral data, Sentinel–2, soil surface conditions, soil organic carbon, NBR2
HGF - Forschungsbereich:Luftfahrt, Raumfahrt und Verkehr
HGF - Programm:Raumfahrt
HGF - Programmthema:Erdbeobachtung
DLR - Schwerpunkt:Raumfahrt
DLR - Forschungsgebiet:R EO - Erdbeobachtung
DLR - Teilgebiet (Projekt, Vorhaben):R - Optische Fernerkundung
Standort: Oberpfaffenhofen
Institute & Einrichtungen:Institut für Methodik der Fernerkundung > Photogrammetrie und Bildanalyse
Hinterlegt von: Heiden, Dr.rer.nat. Uta
Hinterlegt am:25 Nov 2022 10:23
Letzte Änderung:09 Apr 2024 14:03

Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags

Blättern
Suchen
Hilfe & Kontakt
Informationen
electronic library verwendet EPrints 3.3.12
Gestaltung Webseite und Datenbank: Copyright © Deutsches Zentrum für Luft- und Raumfahrt (DLR). Alle Rechte vorbehalten.