elib
DLR-Header
DLR-Logo -> http://www.dlr.de
DLR Portal Home | Impressum | Datenschutz | Kontakt | English
Schriftgröße: [-] Text [+]

High resolution hybrid forecast based on the combination of satellite and an all sky imager network forecasts

Lezaca Galeano, Jorge Enrique und Hammer, Annette und Lünsdorf, Ontje und Schmidt, Thomas und Blum, Niklas (2022) High resolution hybrid forecast based on the combination of satellite and an all sky imager network forecasts. EMS Annual Meeting 2022, 2022-09-04 - 2022-09-09, Bonn, Germany.

[img] PDF
3MB

Kurzfassung

A method to combine a highly resolved All sky imager (ASI) network forecast with a satellite based forecast was developed. The ASI network forecast input is based on the data from the DLR's Eye2Sky network. This network is installed in NortWest Germany and includes 29 ASIs, 10 Rotating Shadowband Irradiometers (RSIs) and 2 reference meteorological stations (based on thermal irradiometers) in an extent of 100 km2. This forecast was developed by our colleges from DLR-SF (Publication in preparation). It has a forecast horizon of 30 minutes and a step of 1 min with an update of 30 seconds on a domain of 40 km2. The satellite based input forecast is based on our operational satellite forecast at DLR-VE and has a horizon of 6 hours with a step and update of 15 minutes. The satellite domain is reduced to the same 40 km2 area. The method consists on 3 blocks, forecasts homogenization, regression and prediction. In the homogenization block the satellite forecast is interpolated in space and time to the resolutions of the ASI network forecast. We applied linear interpolation for both resolutions as first test case. In the second block, a linear regression is applied to find the optimal weights of the linear combination of the forecast inputs, including a bias term. The regression is based on timeseries extracted from the historical forecasts (features) where the reference are taken from the historical timeseries of ground measurements (samples). Historical data is used in order to indirectly characterize the mean actual local weather conditions on the domain. It is important to note that the regression is performed independently for every lead time. In the third block, we use the optimized weights and biases along with the present (not historical) forecasts to produce the hybrid forecasts. The hybrid forecasts resolutions are the same as the ASI based forecast. The output product can be given as maps or timeseries. For the test case, we are limited from the ASI network side to a dataset of 2 full months of forecasts (July and August 2020). The highly resolved hybrid forecast was validated against the individual input sources and satellite persistence. We found that this newly developed forecast outperforms the RMSE of persistence and the individual input forecasts for all lead times calculated. It shows an improvement on RMSE of 5.07% to 13.97% with respect to satellite forecasts and 7.55% to 15.09% with respect to the ASI network forecast on lead times going from 5 to 30 minutes. It also shows a lower RMSE under high variability conditions.

elib-URL des Eintrags:https://elib.dlr.de/190483/
Dokumentart:Konferenzbeitrag (Vortrag)
Titel:High resolution hybrid forecast based on the combination of satellite and an all sky imager network forecasts
Autoren:
AutorenInstitution oder E-Mail-AdresseAutoren-ORCID-iDORCID Put Code
Lezaca Galeano, Jorge EnriqueJorge.Lezaca (at) dlr.dehttps://orcid.org/0000-0001-5513-7467NICHT SPEZIFIZIERT
Hammer, Annetteannette.hammer (at) dlr.dehttps://orcid.org/0000-0002-5630-3620NICHT SPEZIFIZIERT
Lünsdorf, OntjeOntje.Luensdorf (at) DLR.DENICHT SPEZIFIZIERTNICHT SPEZIFIZIERT
Schmidt, Thomasth.Schmidt (at) dlr.deNICHT SPEZIFIZIERTNICHT SPEZIFIZIERT
Blum, NiklasNiklas.Blum (at) dlr.dehttps://orcid.org/0000-0002-1541-7234NICHT SPEZIFIZIERT
Datum:6 September 2022
Referierte Publikation:Nein
Open Access:Ja
Gold Open Access:Nein
In SCOPUS:Nein
In ISI Web of Science:Nein
Status:akzeptierter Beitrag
Stichwörter:Satellite forecast, All Sky Imager forecast, hibrid combined forecast
Veranstaltungstitel:EMS Annual Meeting 2022
Veranstaltungsort:Bonn, Germany
Veranstaltungsart:internationale Konferenz
Veranstaltungsbeginn:4 September 2022
Veranstaltungsende:9 September 2022
Veranstalter :European Meteorological Society
HGF - Forschungsbereich:Luftfahrt, Raumfahrt und Verkehr
HGF - Programm:Luftfahrt
HGF - Programmthema:keine Zuordnung
DLR - Schwerpunkt:Luftfahrt
DLR - Forschungsgebiet:L - keine Zuordnung
DLR - Teilgebiet (Projekt, Vorhaben):L - keine Zuordnung, E - Condition Monitoring
Standort: Oldenburg
Institute & Einrichtungen:Institut für Vernetzte Energiesysteme > Energiesystemanalyse, OL
Institut für Solarforschung > Qualifizierung
Hinterlegt von: Lezaca Galeano, Dr. Jorge Enrique
Hinterlegt am:23 Dez 2022 09:50
Letzte Änderung:24 Apr 2024 20:51

Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags

Blättern
Suchen
Hilfe & Kontakt
Informationen
electronic library verwendet EPrints 3.3.12
Gestaltung Webseite und Datenbank: Copyright © Deutsches Zentrum für Luft- und Raumfahrt (DLR). Alle Rechte vorbehalten.