Evangelisti, Luca und Pfifer, Harald (2022) Polynomial Chaos Approximation of the Quadratic Performance of Uncertain Time-Varying Linear Systems. In: 2022 American Control Conference, ACC 2022. 2022 American Control Conference (ACC), 2022-06-08 - 2022-06-10, Atlanta, GA, USA. doi: 10.23919/ACC53348.2022.9867871. ISBN 978-166545196-3. ISSN 0743-1619.
PDF
312kB |
Offizielle URL: https://ieeexplore.ieee.org/abstract/document/9867871
Kurzfassung
This paper presents a novel approach to robustness analysis based on quadratic performance metrics of uncertain time-varying systems. The considered time-varying systems are assumed to be linear and defined over a finite time horizon. The uncertainties are described in the form of real-valued random variables with a known probability distribution. The quadratic performance problem for this class of systems can be posed as a parametric Riccati differential equation (RDE). A new approach based on polynomial chaos expansion is proposed that can approximately solve the resulting parametric RDE and, thus, provide an approximation of the quadratic performance. Moreover, it is shown that for a zeroth order expansion this approximation is in fact a lower bound to the actual quadratic performance. The effectiveness of the approach is demonstrated on the example of a worst-case performance analysis of a space launcher during its atmospheric ascent.
elib-URL des Eintrags: | https://elib.dlr.de/190401/ | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Dokumentart: | Konferenzbeitrag (Vortrag) | ||||||||||||
Titel: | Polynomial Chaos Approximation of the Quadratic Performance of Uncertain Time-Varying Linear Systems | ||||||||||||
Autoren: |
| ||||||||||||
Datum: | 5 September 2022 | ||||||||||||
Erschienen in: | 2022 American Control Conference, ACC 2022 | ||||||||||||
Referierte Publikation: | Ja | ||||||||||||
Open Access: | Ja | ||||||||||||
Gold Open Access: | Nein | ||||||||||||
In SCOPUS: | Ja | ||||||||||||
In ISI Web of Science: | Ja | ||||||||||||
DOI: | 10.23919/ACC53348.2022.9867871 | ||||||||||||
ISSN: | 0743-1619 | ||||||||||||
ISBN: | 978-166545196-3 | ||||||||||||
Status: | veröffentlicht | ||||||||||||
Stichwörter: | Robust control; Uncertain systems; Time-varying systems | ||||||||||||
Veranstaltungstitel: | 2022 American Control Conference (ACC) | ||||||||||||
Veranstaltungsort: | Atlanta, GA, USA | ||||||||||||
Veranstaltungsart: | internationale Konferenz | ||||||||||||
Veranstaltungsbeginn: | 8 Juni 2022 | ||||||||||||
Veranstaltungsende: | 10 Juni 2022 | ||||||||||||
HGF - Forschungsbereich: | Luftfahrt, Raumfahrt und Verkehr | ||||||||||||
HGF - Programm: | Raumfahrt | ||||||||||||
HGF - Programmthema: | Raumtransport | ||||||||||||
DLR - Schwerpunkt: | Raumfahrt | ||||||||||||
DLR - Forschungsgebiet: | R RP - Raumtransport | ||||||||||||
DLR - Teilgebiet (Projekt, Vorhaben): | R - Systemanalyse Raumtransport (SART) [RP], L - Flugzeugsysteme | ||||||||||||
Standort: | Oberpfaffenhofen | ||||||||||||
Institute & Einrichtungen: | Institut für Systemdynamik und Regelungstechnik > Flugzeug-Systemdynamik | ||||||||||||
Hinterlegt von: | Evangelisti, Luca | ||||||||||||
Hinterlegt am: | 30 Nov 2022 10:20 | ||||||||||||
Letzte Änderung: | 24 Apr 2024 20:51 |
Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags