Röhrig-Zöllner, Melven und Thies, Jonas und Basermann, Achim (2022) Performance of the Low-Rank TT-SVD for Large Dense Tensors on Modern MultiCore CPUs. SIAM Journal on Scientific Computing, 44 (4), C287-C309. SIAM - Society for Industrial and Applied Mathematics. doi: 10.1137/21m1395545. ISSN 1064-8275.
PDF
- Preprintversion (eingereichte Entwurfsversion)
606kB |
Kurzfassung
There are several factorizations of multidimensional tensors into lower-dimensional components, known as ``tensor networks."" We consider the popular ``tensor-train"" (TT) format and ask, How efficiently can we compute a low-rank approximation from a full tensor on current multicore CPUs? Compared to sparse and dense linear algebra, kernel libraries for multilinear algebra are rare and typically not as well optimized. Linear algebra libraries like BLAS and LAPACK may provide the required operations in principle but often at the cost of additional data movements for rearranging memory layouts. Furthermore, these libraries are typically optimized for the compute-bound case (e.g., square matrix operations), whereas low-rank tensor decompositions lead to memory bandwidth limited operations. We propose a ``TT singular value decomposition"" (TT-SVD) algorithm based on two building blocks: a ``Q-less tall-skinny QR"" factorization and a fused tall-skinny matrixmatrix multiplication and reshape operation. We analyze the performance of the resulting TT-SVD algorithm using the roofline performance model. In addition, we present performance results for different algorithmic variants for shared-memory as well as distributed-memory architectures. Our experiments show that commonly used TT-SVD implementations suffer severe performance penalties. We conclude that a dedicated library for tensor factorization kernels would benefit the community: Computing a low-rank approximation can be as cheap as reading the data twice from main memory. As a consequence, an implementation that achieves realistic performance will move the limit at which one has to resort to randomized methods that only process part of the data.
elib-URL des Eintrags: | https://elib.dlr.de/190125/ | ||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Dokumentart: | Zeitschriftenbeitrag | ||||||||||||||||
Titel: | Performance of the Low-Rank TT-SVD for Large Dense Tensors on Modern MultiCore CPUs | ||||||||||||||||
Autoren: |
| ||||||||||||||||
Datum: | Juli 2022 | ||||||||||||||||
Erschienen in: | SIAM Journal on Scientific Computing | ||||||||||||||||
Referierte Publikation: | Ja | ||||||||||||||||
Open Access: | Ja | ||||||||||||||||
Gold Open Access: | Nein | ||||||||||||||||
In SCOPUS: | Ja | ||||||||||||||||
In ISI Web of Science: | Ja | ||||||||||||||||
Band: | 44 | ||||||||||||||||
DOI: | 10.1137/21m1395545 | ||||||||||||||||
Seitenbereich: | C287-C309 | ||||||||||||||||
Verlag: | SIAM - Society for Industrial and Applied Mathematics | ||||||||||||||||
ISSN: | 1064-8275 | ||||||||||||||||
Status: | veröffentlicht | ||||||||||||||||
Stichwörter: | tensor decomposition, performance modeling, high-dimensional problems, higherorder SVD high-performence computing, TT-format | ||||||||||||||||
HGF - Forschungsbereich: | Luftfahrt, Raumfahrt und Verkehr | ||||||||||||||||
HGF - Programm: | Raumfahrt | ||||||||||||||||
HGF - Programmthema: | Technik für Raumfahrtsysteme | ||||||||||||||||
DLR - Schwerpunkt: | Raumfahrt | ||||||||||||||||
DLR - Forschungsgebiet: | R SY - Technik für Raumfahrtsysteme | ||||||||||||||||
DLR - Teilgebiet (Projekt, Vorhaben): | R - Aufgaben SISTEC | ||||||||||||||||
Standort: | Köln-Porz | ||||||||||||||||
Institute & Einrichtungen: | Institut für Softwaretechnologie Institut für Softwaretechnologie > High-Performance Computing | ||||||||||||||||
Hinterlegt von: | Röhrig-Zöllner, Melven | ||||||||||||||||
Hinterlegt am: | 17 Nov 2022 07:45 | ||||||||||||||||
Letzte Änderung: | 20 Jun 2024 13:39 |
Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags