Zhuo, Xiangyu und Tian, Jiaojiao und Fraundorfer, Friedrich (2022) Cross field-based segmentation and learning-based vectorization for rectangular windows. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 16, Seiten 431-448. IEEE - Institute of Electrical and Electronics Engineers. doi: 10.1109/JSTARS.2022.3218767. ISSN 1939-1404.
PDF
- Verlagsversion (veröffentlichte Fassung)
10MB |
Offizielle URL: https://ieeexplore.ieee.org/document/9935110
Kurzfassung
Detection and vectorization of windows from building façades are important for building energy modeling, civil engineering, and architecture design. However, current applications still face the challenges of low accuracy and lack of automation. In this paper we propose a new two-steps workflow for window segmentation and vectorization from façade images. First, we propose a cross field learning-based neural network architecture, which is augmented by a grid-based self-attention module for window segmentation from rectified façade images, resulting in pixel-wise window blobs. Second, we propose a regression neural network augmented by Squeeze-and-Excitation (SE) attention blocks for window vectorization. The network takes the segmentation results together with the original façade image as input, and directly outputs the position of window corners, resulting in vectorized window objects with improved accuracy. In order to validate the effectiveness of our method, experiments are carried out on four public façades image datasets, with results usually yielding a higher accuracy for the final window prediction in comparison to baseline methods on four datasets in terms of IoU score, F1 score, and pixel accuracy.
elib-URL des Eintrags: | https://elib.dlr.de/189964/ | ||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Dokumentart: | Zeitschriftenbeitrag | ||||||||||||||||
Titel: | Cross field-based segmentation and learning-based vectorization for rectangular windows | ||||||||||||||||
Autoren: |
| ||||||||||||||||
Datum: | 4 November 2022 | ||||||||||||||||
Erschienen in: | IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing | ||||||||||||||||
Referierte Publikation: | Ja | ||||||||||||||||
Open Access: | Ja | ||||||||||||||||
Gold Open Access: | Ja | ||||||||||||||||
In SCOPUS: | Ja | ||||||||||||||||
In ISI Web of Science: | Ja | ||||||||||||||||
Band: | 16 | ||||||||||||||||
DOI: | 10.1109/JSTARS.2022.3218767 | ||||||||||||||||
Seitenbereich: | Seiten 431-448 | ||||||||||||||||
Herausgeber: |
| ||||||||||||||||
Verlag: | IEEE - Institute of Electrical and Electronics Engineers | ||||||||||||||||
ISSN: | 1939-1404 | ||||||||||||||||
Status: | veröffentlicht | ||||||||||||||||
Stichwörter: | window segmentation, vectorization, façade parsing, deep learning | ||||||||||||||||
HGF - Forschungsbereich: | Luftfahrt, Raumfahrt und Verkehr | ||||||||||||||||
HGF - Programm: | Verkehr | ||||||||||||||||
HGF - Programmthema: | Straßenverkehr | ||||||||||||||||
DLR - Schwerpunkt: | Verkehr | ||||||||||||||||
DLR - Forschungsgebiet: | V ST Straßenverkehr | ||||||||||||||||
DLR - Teilgebiet (Projekt, Vorhaben): | V - Digitaler Atlas 2.0 | ||||||||||||||||
Standort: | Oberpfaffenhofen | ||||||||||||||||
Institute & Einrichtungen: | Institut für Methodik der Fernerkundung > Photogrammetrie und Bildanalyse | ||||||||||||||||
Hinterlegt von: | Zhuo, Xiangyu | ||||||||||||||||
Hinterlegt am: | 11 Nov 2022 12:40 | ||||||||||||||||
Letzte Änderung: | 04 Dez 2023 10:01 |
Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags