Wartemann, Viola und Wagner, Alexander und Surujhlal, Divek und Dittert, Christian (2022) OCTRA as Ultrasonically Absorptive Thermal Protection Material for Hypersonic Transition Suppression. 2nd International Conference on High-Speed Vehicle Science and Technology (HiSST), 2022-09-11 - 2022-09-15, Bruegge, Belgien.
Dieses Archiv kann nicht den Volltext zur Verfügung stellen.
Kurzfassung
Previous investigations in the High Enthalpy Shock Tunnel G¨ottingen (HEG) of the German Aerospace Center (DLR) show that carbon fiber reinforced carbon ceramic (C/C) surfaces can be utilized to damp hypersonic boundary layer instabilities resulting in a delay of boundary layer transition onset. Numerical stability analyses confirmed these experimental results. However, C/C has some disadvantages, especially the limited oxidation resistance and its low mechanical strength, which could be critical during hypersonic flights. Thus, an ultrasonically absorptive fiber reinforced ceramic material based on a silicon carbide (C/C-SiC) was developed in the past years to fulfill this need. The present paper addresses the numerical rebuild of the C/C-SiC absorber properties using impedance boundary conditions together with linear stability analysis. The focus of this paper is on the numerical comparison of the original C/C material and the improved C/C-SiC material, referred to as OCTRA in the literature. The influence on the second modes and the transition itself is investigated. The numerical results are compared with HEG wind tunnel tests. The wind tunnel model tested in HEG is a 7° half-angle blunted cone with an overall model length of about 1.1 m and a nose tip radius of 2.5 mm. These experiments were performed at Mach 7.5 and at different freestream unit Reynolds numbers.
elib-URL des Eintrags: | https://elib.dlr.de/189911/ | ||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Dokumentart: | Konferenzbeitrag (Vortrag) | ||||||||||||||||||||
Titel: | OCTRA as Ultrasonically Absorptive Thermal Protection Material for Hypersonic Transition Suppression | ||||||||||||||||||||
Autoren: |
| ||||||||||||||||||||
Datum: | 2022 | ||||||||||||||||||||
Referierte Publikation: | Ja | ||||||||||||||||||||
Open Access: | Nein | ||||||||||||||||||||
Gold Open Access: | Nein | ||||||||||||||||||||
In SCOPUS: | Nein | ||||||||||||||||||||
In ISI Web of Science: | Nein | ||||||||||||||||||||
Status: | veröffentlicht | ||||||||||||||||||||
Stichwörter: | Ultrasonically Absorptive Thermal Protection Material, Hypersonic Transition Suppression, Stability Analyses, Second Mode Instability, High Enthalpy Shock Tunnel Göttingen (HEG) | ||||||||||||||||||||
Veranstaltungstitel: | 2nd International Conference on High-Speed Vehicle Science and Technology (HiSST) | ||||||||||||||||||||
Veranstaltungsort: | Bruegge, Belgien | ||||||||||||||||||||
Veranstaltungsart: | internationale Konferenz | ||||||||||||||||||||
Veranstaltungsbeginn: | 11 September 2022 | ||||||||||||||||||||
Veranstaltungsende: | 15 September 2022 | ||||||||||||||||||||
HGF - Forschungsbereich: | Luftfahrt, Raumfahrt und Verkehr | ||||||||||||||||||||
HGF - Programm: | Raumfahrt | ||||||||||||||||||||
HGF - Programmthema: | Raumtransport | ||||||||||||||||||||
DLR - Schwerpunkt: | Raumfahrt | ||||||||||||||||||||
DLR - Forschungsgebiet: | R RP - Raumtransport | ||||||||||||||||||||
DLR - Teilgebiet (Projekt, Vorhaben): | R - Projekt ReFEx - Reusability Flight Experiment | ||||||||||||||||||||
Standort: | Braunschweig | ||||||||||||||||||||
Institute & Einrichtungen: | Institut für Aerodynamik und Strömungstechnik > Raumfahrzeuge, BS Institut für Aerodynamik und Strömungstechnik > Raumfahrzeuge, GO Institut für Bauweisen und Strukturtechnologie > Raumfahrt - System - Integration | ||||||||||||||||||||
Hinterlegt von: | Wartemann, Viola | ||||||||||||||||||||
Hinterlegt am: | 15 Nov 2022 10:42 | ||||||||||||||||||||
Letzte Änderung: | 24 Apr 2024 20:51 |
Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags