Brauer, Christoph und Lorenz, Dirk und Tondji, Lionel (2022) Group equivariant networks for leakage detection in vacuum bagging. In: 30th European Signal Processing Conference, EUSIPCO 2022 - Proceedings, Seiten 1437-1441. IEEE. 2022 30th European Signal Processing Conference (EUSIPCO), 2022-08-29 - 2022-09-02, Belgrad, Serbien. doi: 10.23919/EUSIPCO55093.2022.9909715. ISBN 978-908279709-1. ISSN 2219-5491.
PDF
- Nur DLR-intern zugänglich
1MB |
Offizielle URL: https://ieeexplore.ieee.org/document/9909715
Kurzfassung
The incorporation of prior knowledge into the ma-chine learning pipeline is subject of informed machine learning. Spatial invariances constitute a class of prior knowledge that can be taken into account especially in the design of model architectures or through virtual training examples. In this contribution, we investigate fully connected neural network architectures that are equivariant with respect to the dihedral group of order eight. This is practically motivated by the application of leakage detection in vacuum bagging which plays an important role in the manufacturing of fiber composite components. Our approach for the derivation of an equivariant architecture is constructive and transferable to other symmetry groups. It starts from a standard network architecture and results in a specific kind of weight sharing in each layer. In numerical experiments, we compare equivariant and standard networks on a novel leakage detection dataset. Our results indicate that group equivariant networks can capture the application specific prior knowledge much better than standard networks, even if the latter are trained on augmented data.
elib-URL des Eintrags: | https://elib.dlr.de/189691/ | ||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Dokumentart: | Konferenzbeitrag (Vortrag) | ||||||||||||||||
Zusätzliche Informationen: | Open Access Version verfügbar unter https://eurasip.org/Proceedings/Eusipco/Eusipco2022/pdfs/0001437.pdf | ||||||||||||||||
Titel: | Group equivariant networks for leakage detection in vacuum bagging | ||||||||||||||||
Autoren: |
| ||||||||||||||||
Datum: | 18 Oktober 2022 | ||||||||||||||||
Erschienen in: | 30th European Signal Processing Conference, EUSIPCO 2022 - Proceedings | ||||||||||||||||
Referierte Publikation: | Ja | ||||||||||||||||
Open Access: | Nein | ||||||||||||||||
Gold Open Access: | Nein | ||||||||||||||||
In SCOPUS: | Ja | ||||||||||||||||
In ISI Web of Science: | Nein | ||||||||||||||||
DOI: | 10.23919/EUSIPCO55093.2022.9909715 | ||||||||||||||||
Seitenbereich: | Seiten 1437-1441 | ||||||||||||||||
Verlag: | IEEE | ||||||||||||||||
Name der Reihe: | European Signal Processing Conference (EUSIPCO) | ||||||||||||||||
ISSN: | 2219-5491 | ||||||||||||||||
ISBN: | 978-908279709-1 | ||||||||||||||||
Status: | veröffentlicht | ||||||||||||||||
Stichwörter: | geometric deep learning, neural networks, equivariance, group symmetry | ||||||||||||||||
Veranstaltungstitel: | 2022 30th European Signal Processing Conference (EUSIPCO) | ||||||||||||||||
Veranstaltungsort: | Belgrad, Serbien | ||||||||||||||||
Veranstaltungsart: | internationale Konferenz | ||||||||||||||||
Veranstaltungsbeginn: | 29 August 2022 | ||||||||||||||||
Veranstaltungsende: | 2 September 2022 | ||||||||||||||||
Veranstalter : | European Association For Signal Processing (EURASIP) | ||||||||||||||||
HGF - Forschungsbereich: | Luftfahrt, Raumfahrt und Verkehr | ||||||||||||||||
HGF - Programm: | Luftfahrt | ||||||||||||||||
HGF - Programmthema: | Komponenten und Systeme | ||||||||||||||||
DLR - Schwerpunkt: | Luftfahrt | ||||||||||||||||
DLR - Forschungsgebiet: | L CS - Komponenten und Systeme | ||||||||||||||||
DLR - Teilgebiet (Projekt, Vorhaben): | L - Produktionstechnologien | ||||||||||||||||
Standort: | Stade | ||||||||||||||||
Institute & Einrichtungen: | Institut für Faserverbundleichtbau und Adaptronik | ||||||||||||||||
Hinterlegt von: | Brauer, Dr. Christoph | ||||||||||||||||
Hinterlegt am: | 07 Nov 2022 21:56 | ||||||||||||||||
Letzte Änderung: | 24 Apr 2024 20:50 |
Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags