elib
DLR-Header
DLR-Logo -> http://www.dlr.de
DLR Portal Home | Impressum | Datenschutz | Kontakt | English
Schriftgröße: [-] Text [+]

Expert system based fault diagnosis for railway point machines

Reetz, Susanne und Neumann, Thorsten und Schrijver, Gerrit und van den Berg, Arnout und Buursma, Douwe (2023) Expert system based fault diagnosis for railway point machines. Proceedings of the Institution of Mechanical Engineers, Part F: Journal of Rail and Rapid Transit. SAGE Publications. doi: 10.1177/09544097231195656. ISSN 0954-4097.

[img] PDF - Verlagsversion (veröffentlichte Fassung)
1MB

Offizielle URL: https://journals.sagepub.com/doi/full/10.1177/09544097231195656

Kurzfassung

To meet the increasing demands for availability at reasonable cost, operators and maintainers of railway point machines are constantly looking for innovative techniques for switch condition monitoring and prediction. This includes automated fault root cause diagnosis based on measurement data (such as motor current curves) and other information. However, large, comprehensive sets of labeled data suitable for standard machine learning are not yet available. Existing data-driven approaches focus only on the differentiation of a few major fault categories at the level of the measurement data (i.e. the "fault symptoms"). There is great potential in hybrid models that use expert knowledge in combination with multiple sources of information to automatically identify failure causes at a much more detailed level. This paper discusses a Bayesian network diagnostic model for determining the root causes of faults in point machines, based on expert knowledge and few labeled data examples from the Netherlands. Human-interpretable current curve features and other information sources (e.g. past maintenance actions) are used as evidence. The result of the model is a ranking of the most likely failure causes with associated probabilities in terms of fuzzy multi-label classification, which is directly aimed at providing decision support to maintenance engineers. The validity and limitations of the model are demonstrated by a scenario-based evaluation and a brief analysis using information theoretic measures. We present the information sources used, the detailed development process and the analysis methodology. This article is intended to be a guide to developing similar models for various complex technical assets.

elib-URL des Eintrags:https://elib.dlr.de/189682/
Dokumentart:Zeitschriftenbeitrag
Titel:Expert system based fault diagnosis for railway point machines
Autoren:
AutorenInstitution oder E-Mail-AdresseAutoren-ORCID-iDORCID Put Code
Reetz, SusanneSusanne.Reetz (at) dlr.dehttps://orcid.org/0000-0002-5096-6327NICHT SPEZIFIZIERT
Neumann, ThorstenThorsten.Neumann (at) dlr.dehttps://orcid.org/0000-0002-9236-0585NICHT SPEZIFIZIERT
Schrijver, GerritStrukton RailNICHT SPEZIFIZIERTNICHT SPEZIFIZIERT
van den Berg, ArnoutStrukton RailNICHT SPEZIFIZIERTNICHT SPEZIFIZIERT
Buursma, DouweStrukton RailNICHT SPEZIFIZIERTNICHT SPEZIFIZIERT
Datum:6 November 2023
Erschienen in:Proceedings of the Institution of Mechanical Engineers, Part F: Journal of Rail and Rapid Transit
Referierte Publikation:Ja
Open Access:Ja
Gold Open Access:Nein
In SCOPUS:Ja
In ISI Web of Science:Ja
DOI:10.1177/09544097231195656
Verlag:SAGE Publications
ISSN:0954-4097
Status:veröffentlicht
Stichwörter:railway switch, fault diagnosis, Bayesian networks, expert knowledge, prognostics and health management
HGF - Forschungsbereich:Luftfahrt, Raumfahrt und Verkehr
HGF - Programm:Verkehr
HGF - Programmthema:Schienenverkehr
DLR - Schwerpunkt:Verkehr
DLR - Forschungsgebiet:V SC Schienenverkehr
DLR - Teilgebiet (Projekt, Vorhaben):V - TraCo - Train Control and Management
Standort: Berlin-Adlershof , Braunschweig
Institute & Einrichtungen:Institut für Verkehrssystemtechnik > Informationsgewinnung und Modellierung, BA
Institut für Verkehrssystemtechnik > Informationsgewinnung und Modellierung, BS
Hinterlegt von: Reetz, Susanne
Hinterlegt am:10 Nov 2023 13:47
Letzte Änderung:26 Mär 2024 13:21

Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags

Blättern
Suchen
Hilfe & Kontakt
Informationen
electronic library verwendet EPrints 3.3.12
Gestaltung Webseite und Datenbank: Copyright © Deutsches Zentrum für Luft- und Raumfahrt (DLR). Alle Rechte vorbehalten.