Godbersen, Philipp und Schanz, Daniel und Novara, Matteo und Schröder, Andreas (2022) Improved particle peak detection in images using convolutional neural networks. In: Homer Final Workshop 2022, Seiten 11-12. Homer Final Workshop2022, 2022-02-23 - 2022-02-24, Virtuell.
Dieses Archiv kann nicht den Volltext zur Verfügung stellen.
Offizielle URL: https://homernetwork.org/workshops/
Kurzfassung
An important step in the application of Lagrangian particle tracking (LPT) techniques is the detection of particle peaks on the measurement images, the positions of which are then used for triangulation. Depending on the quality of the image, the shape and size of the particles, and the amount of particle overlap, it can be difficult to find all particle peaks in a measurement image. LPT techniques do not necessarily need a perfect solution to this problem as they can either utilize time-resolved temporal information to minimize their reliance on peak detection [1] or utilize an iterative approach [2] to recover particle positions. However, there is still value in improving the quality of peak detection as this is the first step in the LPT processing pipeline and improved detection and position accuracy has the potential to affect all following steps. This is especially true for two- or multi-pulse applications which rely much more on a good reconstruction of each individual snapshot than the time resolved applications. We introduce a supervised machine learning based approach utilizing convolutional neural networks (CNN) to improve particle peak detection on LPT measurement images.
elib-URL des Eintrags: | https://elib.dlr.de/189381/ | ||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Dokumentart: | Konferenzbeitrag (Vortrag) | ||||||||||||||||||||
Titel: | Improved particle peak detection in images using convolutional neural networks | ||||||||||||||||||||
Autoren: |
| ||||||||||||||||||||
Datum: | Februar 2022 | ||||||||||||||||||||
Erschienen in: | Homer Final Workshop 2022 | ||||||||||||||||||||
Referierte Publikation: | Nein | ||||||||||||||||||||
Open Access: | Nein | ||||||||||||||||||||
Gold Open Access: | Nein | ||||||||||||||||||||
In SCOPUS: | Nein | ||||||||||||||||||||
In ISI Web of Science: | Nein | ||||||||||||||||||||
Seitenbereich: | Seiten 11-12 | ||||||||||||||||||||
Name der Reihe: | Book of Abstracts | ||||||||||||||||||||
Status: | veröffentlicht | ||||||||||||||||||||
Stichwörter: | Peak detection, convolutional neural network, particle tracking | ||||||||||||||||||||
Veranstaltungstitel: | Homer Final Workshop2022 | ||||||||||||||||||||
Veranstaltungsort: | Virtuell | ||||||||||||||||||||
Veranstaltungsart: | Workshop | ||||||||||||||||||||
Veranstaltungsbeginn: | 23 Februar 2022 | ||||||||||||||||||||
Veranstaltungsende: | 24 Februar 2022 | ||||||||||||||||||||
HGF - Forschungsbereich: | Luftfahrt, Raumfahrt und Verkehr | ||||||||||||||||||||
HGF - Programm: | Luftfahrt | ||||||||||||||||||||
HGF - Programmthema: | Effizientes Luftfahrzeug | ||||||||||||||||||||
DLR - Schwerpunkt: | Luftfahrt | ||||||||||||||||||||
DLR - Forschungsgebiet: | L EV - Effizientes Luftfahrzeug | ||||||||||||||||||||
DLR - Teilgebiet (Projekt, Vorhaben): | L - Virtuelles Flugzeug und Validierung | ||||||||||||||||||||
Standort: | Göttingen | ||||||||||||||||||||
Institute & Einrichtungen: | Institut für Aerodynamik und Strömungstechnik > Experimentelle Verfahren, GO | ||||||||||||||||||||
Hinterlegt von: | Micknaus, Ilka | ||||||||||||||||||||
Hinterlegt am: | 14 Dez 2022 14:31 | ||||||||||||||||||||
Letzte Änderung: | 24 Apr 2024 20:50 |
Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags