Hörmann, Felicitas und Bartz, Hannes (2023) Interpolation-Based Decoding of Folded Variants of Linearized and Skew Reed-Solomon Codes. Designs, Codes and Cryptography. Springer. doi: 10.1007/s10623-023-01214-8. ISSN 0925-1022.
PDF
- Preprintversion (eingereichte Entwurfsversion)
604kB | |
PDF
- Verlagsversion (veröffentlichte Fassung)
1MB |
Offizielle URL: https://link.springer.com/article/10.1007/s10623-023-01214-8
Kurzfassung
The sum-rank metric is a hybrid between the Hamming metric and the rank metric and suitable for error correction in multishot network coding and distributed storage as well as for the design of quantum-resistant cryptosystems. In this work, we consider the construction and decoding of folded linearized Reed-Solomon (FLRS) codes, which are shown to be maximum sum-rank distance (MSRD) for appropriate parameter choices. We derive an efficient interpolation-based decoding algorithm for FLRS codes that can be used as a list decoder or as a probabilistic unique decoder. The proposed decoding scheme can correct sum-rank errors beyond the unique decoding radius with a computational complexity that is quadratic in the length of the unfolded code. We show how the error-correction capability can be optimized for high-rate codes by an alternative choice of interpolation points. We derive a heuristic upper bound on the decoding failure probability of the probabilistic unique decoder and verify its tightness by Monte Carlo simulations. Further, we study the construction and decoding of folded skew Reed-Solomon codes in the skew metric. Up to our knowledge, FLRS codes are the first MSRD codes with different block sizes that come along with an efficient decoding algorithm.
elib-URL des Eintrags: | https://elib.dlr.de/189224/ | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Dokumentart: | Zeitschriftenbeitrag | ||||||||||||
Zusätzliche Informationen: | F. Hörmann and H. Bartz acknowledge the financial support by the Federal Ministry of Education and Research of Germany in the programme of “Souverän. Digital. Vernetzt.” Joint project 6 G-RIC, Project Identification Number 16KISK022. | ||||||||||||
Titel: | Interpolation-Based Decoding of Folded Variants of Linearized and Skew Reed-Solomon Codes | ||||||||||||
Autoren: |
| ||||||||||||
Datum: | 6 Mai 2023 | ||||||||||||
Erschienen in: | Designs, Codes and Cryptography | ||||||||||||
Referierte Publikation: | Ja | ||||||||||||
Open Access: | Ja | ||||||||||||
Gold Open Access: | Nein | ||||||||||||
In SCOPUS: | Ja | ||||||||||||
In ISI Web of Science: | Ja | ||||||||||||
DOI: | 10.1007/s10623-023-01214-8 | ||||||||||||
Verlag: | Springer | ||||||||||||
ISSN: | 0925-1022 | ||||||||||||
Status: | veröffentlicht | ||||||||||||
Stichwörter: | folded linearized Reed–Solomon codes, folded skew Reed–Solomon codes, interpolation-based decoding, sum-rank metric, skew metric | ||||||||||||
HGF - Forschungsbereich: | Luftfahrt, Raumfahrt und Verkehr | ||||||||||||
HGF - Programm: | Raumfahrt | ||||||||||||
HGF - Programmthema: | Kommunikation, Navigation, Quantentechnologien | ||||||||||||
DLR - Schwerpunkt: | Raumfahrt | ||||||||||||
DLR - Forschungsgebiet: | R KNQ - Kommunikation, Navigation, Quantentechnologie | ||||||||||||
DLR - Teilgebiet (Projekt, Vorhaben): | R - Projekt Cybersicherheit für autonome und vernetzte Systeme [KNQ] | ||||||||||||
Standort: | Oberpfaffenhofen | ||||||||||||
Institute & Einrichtungen: | Institut für Kommunikation und Navigation > Satellitennetze | ||||||||||||
Hinterlegt von: | Hörmann, Felicitas | ||||||||||||
Hinterlegt am: | 28 Jul 2023 11:29 | ||||||||||||
Letzte Änderung: | 21 Aug 2023 12:43 |
Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags