elib
DLR-Header
DLR-Logo -> http://www.dlr.de
DLR Portal Home | Impressum | Datenschutz | Kontakt | English
Schriftgröße: [-] Text [+]

Multi-Dimensional Numerical Analysis of Flow Instabilities in 3D-Shaped Honeycomb Absorbers

Broeske, Robin Tim und Schwarzbözl, Peter und Hoffschmidt, Bernhard (2022) Multi-Dimensional Numerical Analysis of Flow Instabilities in 3D-Shaped Honeycomb Absorbers. Solar Energy (247), Seiten 86-95. Elsevier. doi: 10.1016/j.solener.2022.10.007. ISSN 0038-092X.

[img] PDF - Postprintversion (akzeptierte Manuskriptversion)
1MB
[img] PDF - Nur DLR-intern zugänglich - Verlagsversion (veröffentlichte Fassung)
1MB

Offizielle URL: https://www.sciencedirect.com/science/article/abs/pii/S0038092X22007411

Kurzfassung

Considered a valid alternative to other receiver types, open volumetric receivers for central tower power plants have been developed and researched for multiple decades. 3D-Shaped absorber geometries, made possible by modern manufacturing technologies, particularly offer the promise of high thermal efficiencies. Yet, volumetric absorbers carry the inherent risk of flow instabilities, which can lead to a total failure of the receiver due to local overheating. Therefore, a numerical, multi-dimensional methodology for the flow stability analysis of volumetric absorbers is proposed. The first stage of the methodology applies an 1D LTNE continuum model to quantify the general pressure loss characteristic of an absorber and identifies critical pressure drop levels with potential for flow instability. These levels are tested as part of the second analysis stage using a discrete 3D CFD model against different irradiation and flow perturbations. If the absorber is able to compensate the disturbances, its flow behavior is deemed stable. Otherwise, the absorber geometry is considered susceptible to local overheating due to flow instability. The new methodology has been validated against two reference absorbers with known stable resp. unstable flow behavior. Further, the new approach was applied to analyze the flow stability of two 3D-shaped honeycomb absorber geometries. It was shown that the geometric features of 3D-shaped absorbers can directly improve the flow stability, but do not prevent instabilities automatically. Therefore, a flow stability analysis should be included in design/optimization processes of new volumetric absorbers alongside a maximization of the thermal efficiency.

elib-URL des Eintrags:https://elib.dlr.de/189065/
Dokumentart:Zeitschriftenbeitrag
Titel:Multi-Dimensional Numerical Analysis of Flow Instabilities in 3D-Shaped Honeycomb Absorbers
Autoren:
AutorenInstitution oder E-Mail-AdresseAutoren-ORCID-iDORCID Put Code
Broeske, Robin TimRobin.Broeske (at) dlr.dehttps://orcid.org/0000-0001-5157-6251NICHT SPEZIFIZIERT
Schwarzbözl, PeterPeter.Schwarzboezl (at) dlr.dehttps://orcid.org/0000-0001-9339-7884NICHT SPEZIFIZIERT
Hoffschmidt, BernhardBernhard.Hoffschmidt (at) dlr.deNICHT SPEZIFIZIERTNICHT SPEZIFIZIERT
Datum:15 November 2022
Erschienen in:Solar Energy
Referierte Publikation:Ja
Open Access:Nein
Gold Open Access:Nein
In SCOPUS:Ja
In ISI Web of Science:Ja
DOI:10.1016/j.solener.2022.10.007
Seitenbereich:Seiten 86-95
Verlag:Elsevier
ISSN:0038-092X
Status:veröffentlicht
Stichwörter:open volumetric receiver, flow stability, CFD simulation, discrete 3D model, 1D LTNE model
HGF - Forschungsbereich:Energie
HGF - Programm:Materialien und Technologien für die Energiewende
HGF - Programmthema:Thermische Hochtemperaturtechnologien
DLR - Schwerpunkt:Energie
DLR - Forschungsgebiet:E SW - Solar- und Windenergie
DLR - Teilgebiet (Projekt, Vorhaben):E - Intelligenter Betrieb
Standort: Jülich
Institute & Einrichtungen:Institut für Solarforschung > Solare Kraftwerktechnik
Hinterlegt von: Broeske, Robin Tim
Hinterlegt am:28 Okt 2022 10:12
Letzte Änderung:15 Nov 2024 03:00

Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags

Blättern
Suchen
Hilfe & Kontakt
Informationen
electronic library verwendet EPrints 3.3.12
Gestaltung Webseite und Datenbank: Copyright © Deutsches Zentrum für Luft- und Raumfahrt (DLR). Alle Rechte vorbehalten.