Adolfs, Marjolijn und Hoque, Mohammed Mainul und Shprits, Yuri (2022) Using a neural network-based TEC model to reproduce the small-scale Nighttime Winter Anomaly feature. International Workshop on GNSS Ionosphere (IWGI2022), 2022-09-26 - 2022-09-28, Neustrelitz, Germany.
Dieses Archiv kann nicht den Volltext zur Verfügung stellen.
Kurzfassung
In this work a Neural Network (NN) based TEC model is proposed which is trained on vertical Total Electron Content (TEC) data from Global Ionospheric Maps (GIMs). The GIMs comprise a period of almost 20 years (2001-2020). The model was tested with data from the High Solar Activity (HSA) year 2015 and the Low Solar Activity (LSA) year 2020. The test data was excluded from the training dataset. The model performance was compared with the Neustrelitz TEC model (NTCM) and an improvement of approximately 1 TEC Unit was found during both solar activity periods for the NN based TEC model. Not only the performance of the NN based TEC model was analyzed but also its capability in predicting TEC containing large- and small-scale features of the ionosphere, e.g. the seasonal-, solar activity-, diurnal variations, equatorial anomalies and the Nighttime Winter Anomaly (NWA) was evaluated. Other NN-based networks are also capable of showing large-scale features in their predictions but the capability of reproducing the small-scale NWA feature is new. The NWA is only visible at certain locations in the Northern Hemisphere at the American sector and in the Southern Hemisphere at the Asian longitude sector under LSA conditions. This feature is caused by a higher mean ionization level during the winter nights compared to the summer nights.
elib-URL des Eintrags: | https://elib.dlr.de/188956/ | ||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Dokumentart: | Konferenzbeitrag (Vortrag) | ||||||||||||||||
Titel: | Using a neural network-based TEC model to reproduce the small-scale Nighttime Winter Anomaly feature | ||||||||||||||||
Autoren: |
| ||||||||||||||||
Datum: | 2022 | ||||||||||||||||
Referierte Publikation: | Nein | ||||||||||||||||
Open Access: | Nein | ||||||||||||||||
Gold Open Access: | Nein | ||||||||||||||||
In SCOPUS: | Nein | ||||||||||||||||
In ISI Web of Science: | Nein | ||||||||||||||||
Status: | veröffentlicht | ||||||||||||||||
Stichwörter: | Ionosphere, TEC, neural network, Nighttime Winter Anomaly | ||||||||||||||||
Veranstaltungstitel: | International Workshop on GNSS Ionosphere (IWGI2022) | ||||||||||||||||
Veranstaltungsort: | Neustrelitz, Germany | ||||||||||||||||
Veranstaltungsart: | Workshop | ||||||||||||||||
Veranstaltungsbeginn: | 26 September 2022 | ||||||||||||||||
Veranstaltungsende: | 28 September 2022 | ||||||||||||||||
HGF - Forschungsbereich: | Luftfahrt, Raumfahrt und Verkehr | ||||||||||||||||
HGF - Programm: | Raumfahrt | ||||||||||||||||
HGF - Programmthema: | Erdbeobachtung | ||||||||||||||||
DLR - Schwerpunkt: | Raumfahrt | ||||||||||||||||
DLR - Forschungsgebiet: | R EO - Erdbeobachtung | ||||||||||||||||
DLR - Teilgebiet (Projekt, Vorhaben): | R - Solar-Terrestrische Physik SO | ||||||||||||||||
Standort: | Neustrelitz | ||||||||||||||||
Institute & Einrichtungen: | Institut für Solar-Terrestrische Physik > Weltraumwetterbeobachtung | ||||||||||||||||
Hinterlegt von: | Adolfs, Marjolijn | ||||||||||||||||
Hinterlegt am: | 14 Okt 2022 12:18 | ||||||||||||||||
Letzte Änderung: | 11 Okt 2024 11:54 |
Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags