Sasanpour, Shima und Cao, Karl-Kiên (2022) Quantifying capacity adequacy in energy system modelling through stochastic optimization. International Conference on Operations Research - OR 2022, 2022-09-06 - 2022-09-09, Karlsruhe, Deutschland. (eingereichter Beitrag)
PDF
- Nur DLR-intern zugänglich
228kB | |
PDF
- Nur DLR-intern zugänglich
1MB |
Kurzfassung
Energy system optimization models (ESOMs) can be helpful tools to determine the optimal structure of future energy systems. They usually optimize the expansion and dispatch of energy systems through a minimization of the total system costs. The obtained energy systems are designed to cover the energy demand for the specific assumptions made within the underlying scenarios. However, if such energy systems are exposed to slight deviations, such as a lower availability of wind energy, situations of uncovered demand may occur. The uncertainties in the scenario assumptions can be indirectly captured via the requirement for excess generation capacities. However, the required amount of these excess capacities is unclear. This study analyzes capacity adequacy by considering uncertainties in a decar-bonized German power system through stochastic optimization within an ESOM. Different uncertainties, such as technology investment costs, total annual demand and different weather conditions are considered and their influence on the energy system is compared. Therefore, a variety of different assumptions for these un-certainties are extracted from literature and included in the stochastic optimization. As a result, the impact of the uncertainties on the structure of the energy system are identified and the excess capacity needed is estimated.
elib-URL des Eintrags: | https://elib.dlr.de/188556/ | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Dokumentart: | Konferenzbeitrag (Vortrag) | ||||||||||||
Titel: | Quantifying capacity adequacy in energy system modelling through stochastic optimization | ||||||||||||
Autoren: |
| ||||||||||||
Datum: | 2022 | ||||||||||||
Referierte Publikation: | Ja | ||||||||||||
Open Access: | Nein | ||||||||||||
Gold Open Access: | Nein | ||||||||||||
In SCOPUS: | Nein | ||||||||||||
In ISI Web of Science: | Nein | ||||||||||||
Status: | eingereichter Beitrag | ||||||||||||
Stichwörter: | Stochastic programming, energy system optimization model, decarbonized energy system | ||||||||||||
Veranstaltungstitel: | International Conference on Operations Research - OR 2022 | ||||||||||||
Veranstaltungsort: | Karlsruhe, Deutschland | ||||||||||||
Veranstaltungsart: | internationale Konferenz | ||||||||||||
Veranstaltungsbeginn: | 6 September 2022 | ||||||||||||
Veranstaltungsende: | 9 September 2022 | ||||||||||||
HGF - Forschungsbereich: | Energie | ||||||||||||
HGF - Programm: | Energiesystemdesign | ||||||||||||
HGF - Programmthema: | Energiesystemtransformation | ||||||||||||
DLR - Schwerpunkt: | Energie | ||||||||||||
DLR - Forschungsgebiet: | E SY - Energiesystemtechnologie und -analyse | ||||||||||||
DLR - Teilgebiet (Projekt, Vorhaben): | E - Systemanalyse und Technologiebewertung | ||||||||||||
Standort: | Stuttgart | ||||||||||||
Institute & Einrichtungen: | Institut für Vernetzte Energiesysteme > Energiesystemanalyse, ST | ||||||||||||
Hinterlegt von: | Sasanpour, Shima | ||||||||||||
Hinterlegt am: | 07 Okt 2022 17:20 | ||||||||||||
Letzte Änderung: | 24 Apr 2024 20:49 |
Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags