elib
DLR-Header
DLR-Logo -> http://www.dlr.de
DLR Portal Home | Impressum | Datenschutz | Kontakt | English
Schriftgröße: [-] Text [+]

Colony growth and biofilm formation of Aspergillus niger under simulated microgravity

Cortesao, Marta und Holland, Gudrun und Schütze, Tabea und Laue, Michael und Moeller, Ralf und Meyer, Vera (2022) Colony growth and biofilm formation of Aspergillus niger under simulated microgravity. Frontiers in Microbiology, 13, Seite 975763. Frontiers Media S.A.. doi: 10.3389/fmicb.2022.975763. ISSN 1664-302X.

[img] PDF - Verlagsversion (veröffentlichte Fassung)
7MB

Offizielle URL: https://dx.doi.org/10.3389/fmicb.2022.975763

Kurzfassung

The biotechnology- and medicine-relevant fungus Aspergillus niger is a common colonizer of indoor habitats such as the International Space Station (ISS). Being able to colonize and biodegrade a wide range of surfaces, A. niger can ultimately impact human health and habitat safety. Surface contamination relies on two key-features of the fungal colony: the fungal spores, and the vegetative mycelium, also known as biofilm. Aboard the ISS, microorganisms and astronauts are shielded from extreme temperatures and radiation, but are inevitably affected by spaceflight microgravity. Knowing how microgravity affects A. niger colony growth, in particular regarding the vegetative mycelium (biofilm) and spore production, will help prevent and control fungal contaminations in indoor habitats on Earth and in space. Because fungal colonies grown on agar can be considered analogs for surface contamination, we investigated A. niger colony growth on agar in normal gravity (Ground) and simulated microgravity (SMG) conditions by fast-clinorotation. Three strains were included: a wild-type strain, a pigmentation mutant (ΔfwnA), and a hyperbranching mutant (ΔracA). Our study presents never before seen scanning electron microscopy (SEM) images of A. niger colonies that reveal a complex ultrastructure and biofilm architecture, and provide insights into fungal colony development, both on ground and in simulated microgravity. Results show that simulated microgravity affects colony growth in a strain-dependent manner, leading to thicker biofilms (vegetative mycelium) and increased spore production. We suggest that the Rho GTPase RacA might play a role in A. niger’s adaptation to simulated microgravity, as deletion of ΔracA leads to changes in biofilm thickness, spore production and total biomass. We also propose that FwnA-mediated melanin production plays a role in A. niger’s microgravity response, as ΔfwnA mutant colonies grown under SMG conditions showed increased colony area and spore production. Taken together, our study shows that simulated microgravity does not inhibit A. niger growth, but rather indicates a potential increase in surface-colonization. Further studies addressing fungal growth and surface contaminations in spaceflight should be conducted, not only to reduce the risk of negatively impacting human health and spacecraft material safety, but also to positively utilize fungal-based biotechnology to acquire needed resources in situ.

elib-URL des Eintrags:https://elib.dlr.de/188518/
Dokumentart:Zeitschriftenbeitrag
Titel:Colony growth and biofilm formation of Aspergillus niger under simulated microgravity
Autoren:
AutorenInstitution oder E-Mail-AdresseAutoren-ORCID-iDORCID Put Code
Cortesao, MartaRadiation Biology Department, Institute of Aerospace Medicine, German Aerospace Center (DLR), Cologne, Germany and Chair of Applied and Molecular Microbiology, Institute of Biotechnology, Technische Universität Berlin, Germany; Marta.Cortesao (at) dlr.dehttps://orcid.org/0000-0001-6603-1211NICHT SPEZIFIZIERT
Holland, GudrunRobert Koch Institute, Advanced Light and Electron Microscopy (ZBS 4), Berlin, GermanyNICHT SPEZIFIZIERTNICHT SPEZIFIZIERT
Schütze, TabeaChair of Applied and Molecular Microbiology, Institute of Biotechnology, Technische Universität Berlin, Berlin, GermanyNICHT SPEZIFIZIERTNICHT SPEZIFIZIERT
Laue, MichaelRobert Koch Institute, Advanced Light and Electron Microscopy (ZBS 4), Berlin, GermanyNICHT SPEZIFIZIERTNICHT SPEZIFIZIERT
Moeller, RalfRadiation Biology Department, Institute of Aerospace Medicine, German Aerospace Center (DLR), Cologne, Germany; ralf.moeller (at) dlr.dehttps://orcid.org/0000-0002-2371-0676NICHT SPEZIFIZIERT
Meyer, VeraChair of Applied and Molecular Microbiology, Institute of Biotechnology, Technische Universität Berlin, Berlin, Germanyhttps://orcid.org/0000-0002-2298-2258NICHT SPEZIFIZIERT
Datum:23 September 2022
Erschienen in:Frontiers in Microbiology
Referierte Publikation:Ja
Open Access:Ja
Gold Open Access:Ja
In SCOPUS:Ja
In ISI Web of Science:Ja
Band:13
DOI:10.3389/fmicb.2022.975763
Seitenbereich:Seite 975763
Verlag:Frontiers Media S.A.
ISSN:1664-302X
Status:veröffentlicht
Stichwörter:Aspergillus niger, simulated microgravity, biofilm, scanning electron microscopy, pigmentation, mycelium network, racA, fwnA
HGF - Forschungsbereich:Luftfahrt, Raumfahrt und Verkehr
HGF - Programm:Raumfahrt
HGF - Programmthema:Forschung unter Weltraumbedingungen
DLR - Schwerpunkt:Raumfahrt
DLR - Forschungsgebiet:R FR - Forschung unter Weltraumbedingungen
DLR - Teilgebiet (Projekt, Vorhaben):R - Projekt ISS LIFE 2.0
Standort: Köln-Porz
Institute & Einrichtungen:Institut für Luft- und Raumfahrtmedizin > Strahlenbiologie
Hinterlegt von: Kopp, Kerstin
Hinterlegt am:06 Okt 2022 13:37
Letzte Änderung:18 Okt 2022 12:14

Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags

Blättern
Suchen
Hilfe & Kontakt
Informationen
electronic library verwendet EPrints 3.3.12
Gestaltung Webseite und Datenbank: Copyright © Deutsches Zentrum für Luft- und Raumfahrt (DLR). Alle Rechte vorbehalten.