Thies, Jonas und Hof, Moritz Travis und Zimmermann, Matthias und Efremov, Maxim (2022) Tensor product scheme for computing bound states of the quantum mechanical three-body problem. Journal of Computational Science, 64, Seite 101859. Elsevier. doi: 10.1016/j.jocs.2022.101859. ISSN 1877-7503.
PDF
- Verlagsversion (veröffentlichte Fassung)
935kB |
Offizielle URL: https://www.sciencedirect.com/science/article/pii/S1877750322002186
Kurzfassung
We develop a computationally and numerically efficient method to calculate binding energies and corresponding wave functions of quantum mechanical three-body problems in low dimensions. Our approach exploits the tensor structure of the multidimensional stationary Schrödinger equation, being expressed as a discretized linear eigenvalue problem. In one spatial dimension, we solve the three-body problem with the help of iterative methods. Here the application of the Hamiltonian operator is represented by dense matrix–matrix products. In combination with a newly-designed preconditioner for the Jacobi–Davidson QR, our highly accurate tensor method offers a significantly faster computation of three-body energies and bound states than other existing approaches. For the two-dimensional case, we additionally make use of a hybrid distributed/shared memory parallel implementation to calculate the corresponding three-body energies. Our novel method is of high relevance for the analysis of few-body systems and their universal behavior, which is only governed by the particle masses, overall symmetries, and the spatial dimensionality. Our results have straightforward applications for ultracold atomic gases that are widespread and nowadays utilized in quantum sensors.
elib-URL des Eintrags: | https://elib.dlr.de/188463/ | ||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Dokumentart: | Zeitschriftenbeitrag | ||||||||||||||||||||
Titel: | Tensor product scheme for computing bound states of the quantum mechanical three-body problem | ||||||||||||||||||||
Autoren: |
| ||||||||||||||||||||
Datum: | 24 September 2022 | ||||||||||||||||||||
Erschienen in: | Journal of Computational Science | ||||||||||||||||||||
Referierte Publikation: | Ja | ||||||||||||||||||||
Open Access: | Ja | ||||||||||||||||||||
Gold Open Access: | Nein | ||||||||||||||||||||
In SCOPUS: | Ja | ||||||||||||||||||||
In ISI Web of Science: | Ja | ||||||||||||||||||||
Band: | 64 | ||||||||||||||||||||
DOI: | 10.1016/j.jocs.2022.101859 | ||||||||||||||||||||
Seitenbereich: | Seite 101859 | ||||||||||||||||||||
Verlag: | Elsevier | ||||||||||||||||||||
ISSN: | 1877-7503 | ||||||||||||||||||||
Status: | veröffentlicht | ||||||||||||||||||||
Stichwörter: | Schrödinger equation Three-body problem Pseudospectral method Tensor product structure Jacobi–Davidson method | ||||||||||||||||||||
HGF - Forschungsbereich: | Luftfahrt, Raumfahrt und Verkehr | ||||||||||||||||||||
HGF - Programm: | Raumfahrt | ||||||||||||||||||||
HGF - Programmthema: | Kommunikation, Navigation, Quantentechnologien | ||||||||||||||||||||
DLR - Schwerpunkt: | Raumfahrt | ||||||||||||||||||||
DLR - Forschungsgebiet: | R KNQ - Kommunikation, Navigation, Quantentechnologie | ||||||||||||||||||||
DLR - Teilgebiet (Projekt, Vorhaben): | R - Projekt Wenig- und Vielteilchenphysik mit Quantenwellen | ||||||||||||||||||||
Standort: | Ulm | ||||||||||||||||||||
Institute & Einrichtungen: | Institut für Quantentechnologien > Theoretische Quantenphysik | ||||||||||||||||||||
Hinterlegt von: | Efremov, Prof. Dr. Maxim | ||||||||||||||||||||
Hinterlegt am: | 26 Sep 2022 23:21 | ||||||||||||||||||||
Letzte Änderung: | 26 Sep 2022 23:21 |
Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags