Hoeser, Thorsten und Feuerstein, Stefanie und Kuenzer, Claudia (2022) DeepOWT: a global offshore wind turbine data set derived with deep learning from Sentinel-1 data. Earth System Science Data, 14, Seiten 4251-4270. Copernicus Publications. doi: 10.5194/essd-14-4251-2022. ISSN 1866-3508.
PDF
- Verlagsversion (veröffentlichte Fassung)
15MB |
Offizielle URL: https://essd.copernicus.org/articles/14/4251/2022/essd-14-4251-2022.html
Kurzfassung
Offshore wind energy is at the advent of a massive global expansion. To investigate the development of the offshore wind energy sector, optimal offshore wind farm locations, or the impact of offshore wind farm projects, a freely accessible spatiotemporal data set of offshore wind energy infrastructure is necessary. With free and direct access to such data, it is more likely that all stakeholders who operate in marine and coastal environments will become involved in the upcoming massive expansion of offshore wind farms. To that end, we introduce the DeepOWT (Deep-learning-derived Offshore Wind Turbines) data set (available at https://doi.org/10.5281/zenodo.5933967, Hoeser and Kuenzer, 2022b), which provides 9941 offshore wind energy infrastructure locations along with their deployment stages on a global scale. DeepOWT is based on freely accessible Earth observation data from the Sentinel-1 radar mission. The offshore wind energy infrastructure locations were derived by applying deep-learning-based object detection with two cascading convolutional neural networks (CNNs) to search the entire Sentinel-1 archive on a global scale. The two successive CNNs have previously been optimised solely on synthetic training examples to detect the offshore wind energy infrastructures in real-world imagery. With subsequent temporal analysis of the radar signal at the detected locations, the DeepOWT data set reports the deployment stages of each infrastructure with a quarterly frequency from July 2016 until June 2021. The spatiotemporal information is compiled in a ready-to-use geographic information system (GIS) format to make the usability of the data set as accessible as possible.
elib-URL des Eintrags: | https://elib.dlr.de/188439/ | ||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Dokumentart: | Zeitschriftenbeitrag | ||||||||||||||||
Titel: | DeepOWT: a global offshore wind turbine data set derived with deep learning from Sentinel-1 data | ||||||||||||||||
Autoren: |
| ||||||||||||||||
Datum: | 19 September 2022 | ||||||||||||||||
Erschienen in: | Earth System Science Data | ||||||||||||||||
Referierte Publikation: | Ja | ||||||||||||||||
Open Access: | Ja | ||||||||||||||||
Gold Open Access: | Ja | ||||||||||||||||
In SCOPUS: | Ja | ||||||||||||||||
In ISI Web of Science: | Ja | ||||||||||||||||
Band: | 14 | ||||||||||||||||
DOI: | 10.5194/essd-14-4251-2022 | ||||||||||||||||
Seitenbereich: | Seiten 4251-4270 | ||||||||||||||||
Verlag: | Copernicus Publications | ||||||||||||||||
ISSN: | 1866-3508 | ||||||||||||||||
Status: | veröffentlicht | ||||||||||||||||
Stichwörter: | Offshore wind energy, Deep-learning-based image analysis, Earth observation, Sentinel-1 | ||||||||||||||||
HGF - Forschungsbereich: | Luftfahrt, Raumfahrt und Verkehr | ||||||||||||||||
HGF - Programm: | Raumfahrt | ||||||||||||||||
HGF - Programmthema: | Erdbeobachtung | ||||||||||||||||
DLR - Schwerpunkt: | Raumfahrt | ||||||||||||||||
DLR - Forschungsgebiet: | R EO - Erdbeobachtung | ||||||||||||||||
DLR - Teilgebiet (Projekt, Vorhaben): | R - Geowissenschaftl. Fernerkundungs- und GIS-Verfahren | ||||||||||||||||
Standort: | Oberpfaffenhofen | ||||||||||||||||
Institute & Einrichtungen: | Deutsches Fernerkundungsdatenzentrum > Dynamik der Landoberfläche | ||||||||||||||||
Hinterlegt von: | Varga, Monica-Marieta | ||||||||||||||||
Hinterlegt am: | 27 Sep 2022 10:26 | ||||||||||||||||
Letzte Änderung: | 19 Okt 2023 13:05 |
Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags