Dariol, Quentin und Le Nours, Sebastien und Pillement, Sebastien und Stemmer, Ralf und Helms, Domenik und Grüttner, Kim (2022) Hybrid Performance Prediction Models for Fully-Connected Neural Networks on MPSoC. In: Hybrid Performance Prediction Models for Fully-Connected Neural Networks on MPSoC. 16th Colloquium of GDR SoC2, 2022-06-27 - 2022-06-29, Strasbourg, France. doi: 10.5281/zenodo.11208702.
PDF
1MB |
Kurzfassung
Predicting the performance of Artificial Neural Networks (ANNs) on embedded multi-core platforms is tedious. Concurrent accesses to shared resources are hard to model due to congestion effects on the shared communication medium, which affect the performance of the application. In this paper we present a hybrid modeling environment to enable fast yet accurate timing prediction for fully-connected ANNs deployed on multi-core platforms. The modeling flow is based on the integration of an analytical computation time model with a communication time model which are both calibrated through measurement inside a system level simulation using SystemC. The proposed flow enables the prediction of the end-to-end latency for different mappings of several fully-connected ANNs with an average of more than 99 % accuracy.
elib-URL des Eintrags: | https://elib.dlr.de/188199/ | ||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Dokumentart: | Konferenzbeitrag (Poster) | ||||||||||||||||||||||||||||
Zusätzliche Informationen: | Abstract (2 pages) and poster presentation | ||||||||||||||||||||||||||||
Titel: | Hybrid Performance Prediction Models for Fully-Connected Neural Networks on MPSoC | ||||||||||||||||||||||||||||
Autoren: |
| ||||||||||||||||||||||||||||
Datum: | 2022 | ||||||||||||||||||||||||||||
Erschienen in: | Hybrid Performance Prediction Models for Fully-Connected Neural Networks on MPSoC | ||||||||||||||||||||||||||||
Referierte Publikation: | Ja | ||||||||||||||||||||||||||||
Open Access: | Ja | ||||||||||||||||||||||||||||
Gold Open Access: | Nein | ||||||||||||||||||||||||||||
In SCOPUS: | Nein | ||||||||||||||||||||||||||||
In ISI Web of Science: | Nein | ||||||||||||||||||||||||||||
DOI: | 10.5281/zenodo.11208702 | ||||||||||||||||||||||||||||
Status: | veröffentlicht | ||||||||||||||||||||||||||||
Stichwörter: | Model of Performance, Multi Processor, SystemC simulation, Artificial Neural Networks | ||||||||||||||||||||||||||||
Veranstaltungstitel: | 16th Colloquium of GDR SoC2 | ||||||||||||||||||||||||||||
Veranstaltungsort: | Strasbourg, France | ||||||||||||||||||||||||||||
Veranstaltungsart: | nationale Konferenz | ||||||||||||||||||||||||||||
Veranstaltungsbeginn: | 27 Juni 2022 | ||||||||||||||||||||||||||||
Veranstaltungsende: | 29 Juni 2022 | ||||||||||||||||||||||||||||
Veranstalter : | GDR SoC2 | ||||||||||||||||||||||||||||
HGF - Forschungsbereich: | Luftfahrt, Raumfahrt und Verkehr | ||||||||||||||||||||||||||||
HGF - Programm: | Verkehr | ||||||||||||||||||||||||||||
HGF - Programmthema: | keine Zuordnung | ||||||||||||||||||||||||||||
DLR - Schwerpunkt: | Verkehr | ||||||||||||||||||||||||||||
DLR - Forschungsgebiet: | V - keine Zuordnung | ||||||||||||||||||||||||||||
DLR - Teilgebiet (Projekt, Vorhaben): | V - keine Zuordnung | ||||||||||||||||||||||||||||
Standort: | Oldenburg | ||||||||||||||||||||||||||||
Institute & Einrichtungen: | Institut für Systems Engineering für zukünftige Mobilität > System Evolution and Operation | ||||||||||||||||||||||||||||
Hinterlegt von: | Dariol, Quentin | ||||||||||||||||||||||||||||
Hinterlegt am: | 26 Sep 2022 08:58 | ||||||||||||||||||||||||||||
Letzte Änderung: | 21 Mai 2024 07:42 |
Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags