elib
DLR-Header
DLR-Logo -> http://www.dlr.de
DLR Portal Home | Impressum | Datenschutz | Kontakt | English
Schriftgröße: [-] Text [+]

Retrievals of ice microphysical properties using dual-wavelength polarimetric radar observations during stratiform precipitation events

Tetoni, Eleni und Ewald, Florian und Hagen, Martin und Köcher, Gregor und Zinner, Tobias und Groß, Silke Martha (2022) Retrievals of ice microphysical properties using dual-wavelength polarimetric radar observations during stratiform precipitation events. Atmospheric Measurement Techniques (AMT), 15 (13), Seiten 3969-3999. Copernicus Publications. doi: 10.5194/amt-15-3969-2022. ISSN 1867-1381.

[img] PDF - Nur DLR-intern zugänglich - Verlagsversion (veröffentlichte Fassung)
22MB

Offizielle URL: https://amt.copernicus.org/articles/15/3969/2022/amt-15-3969-2022.html

Kurzfassung

Ice growth processes within clouds affect the type and amount of precipitation. Hence, the importance of an accurate representation of ice microphysics in numerical weather and numerical climate models has been confirmed by several studies. To better constrain ice processes in models, we need to study ice cloud regions before and during monitored precipitation events. For this purpose, two radar instruments facing each other were used to collect complementary measurements. The C-band POLDIRAD weather radar from the German Aerospace Center (DLR) in Oberpfaffenhofen and the Ka-band MIRA-35 cloud radar from the Ludwig Maximilians University of Munich (LMU) were used to monitor stratiform precipitation in the vertical cross-sectional area between the two instruments. The logarithmic difference of radar reflectivities at two different wavelengths (54.5 and 8.5 mm), known as the dual-wavelength ratio, was exploited to provide information about the size of the detected ice hydrometeors, taking advantage of the different scattering behavior in the Rayleigh and Mie regime. Along with the dual-wavelength ratio, differential radar reflectivity measurements from POLDIRAD provided information about the apparent shape of the detected ice hydrometeors. Scattering simulations using the T-matrix method were performed for oblate and horizontally aligned prolate ice spheroids of varying shape and size using a realistic particle size distribution and a well-established mass–size relationship. The combination of dual-wavelength ratio, radar reflectivity, and differential radar reflectivity measurements as well as scattering simulations was used for the development of a novel retrieval for ice cloud microphysics. The development of the retrieval scheme also comprised a method to estimate the hydrometeor attenuation in both radar bands. To demonstrate this approach, a feasibility study was conducted on three stratiform snow events which were monitored over Munich in January 2019. The ice retrieval can provide ice particle shape, size, and mass information which is in line with differential radar reflectivity, dual-wavelength ratio, and radar reflectivity observations, respectively, when the ice spheroids are assumed to be oblates and to follow the mass–size relation of aggregates. When combining two spatially separated radars to retrieve ice microphysics, the beam width mismatch can locally lead to significant uncertainties. However, the calibration uncertainty is found to cause the largest bias for the averaged retrieved size and mass. Moreover, the shape assumption is found to be equally important to the calibration uncertainty for the retrieved size, while it is less important than the calibration uncertainty for the retrieval of ice mass. A further finding is the importance of the differential radar reflectivity for the particle size retrieval directly above the MIRA-35 cloud radar. Especially for that observation geometry, the simultaneous slantwise observation from the polarimetric weather radar POLDIRAD can reduce ambiguities in retrieval of the ice particle size by constraining the ice particle shape.

elib-URL des Eintrags:https://elib.dlr.de/188172/
Dokumentart:Zeitschriftenbeitrag
Titel:Retrievals of ice microphysical properties using dual-wavelength polarimetric radar observations during stratiform precipitation events
Autoren:
AutorenInstitution oder E-Mail-AdresseAutoren-ORCID-iDORCID Put Code
Tetoni, EleniDLR, IPAhttps://orcid.org/0000-0003-3441-8803NICHT SPEZIFIZIERT
Ewald, FlorianDLR, IPAhttps://orcid.org/0000-0002-5899-0890NICHT SPEZIFIZIERT
Hagen, MartinDLR, IPAhttps://orcid.org/0000-0003-4714-0775NICHT SPEZIFIZIERT
Köcher, GregorLudwig-Maximilians-Universität München, Munich, Germanyhttps://orcid.org/0000-0003-1586-6774NICHT SPEZIFIZIERT
Zinner, TobiasLudwig-Maximilians-Universität München, Munich, GermanyNICHT SPEZIFIZIERTNICHT SPEZIFIZIERT
Groß, Silke MarthaDLR, IPAhttps://orcid.org/0000-0002-7467-9269NICHT SPEZIFIZIERT
Datum:5 Juli 2022
Erschienen in:Atmospheric Measurement Techniques (AMT)
Referierte Publikation:Ja
Open Access:Ja
Gold Open Access:Ja
In SCOPUS:Ja
In ISI Web of Science:Ja
Band:15
DOI:10.5194/amt-15-3969-2022
Seitenbereich:Seiten 3969-3999
Verlag:Copernicus Publications
ISSN:1867-1381
Status:veröffentlicht
Stichwörter:dual-wavelength radar method, polarimetry, ice microphysics, ice scattering simulations
HGF - Forschungsbereich:Luftfahrt, Raumfahrt und Verkehr
HGF - Programm:Raumfahrt
HGF - Programmthema:Erdbeobachtung
DLR - Schwerpunkt:Raumfahrt
DLR - Forschungsgebiet:R EO - Erdbeobachtung
DLR - Teilgebiet (Projekt, Vorhaben):R - Atmosphären- und Klimaforschung
Standort: Oberpfaffenhofen
Institute & Einrichtungen:Institut für Physik der Atmosphäre > Lidar
Hinterlegt von: Tetoni, Eleni
Hinterlegt am:07 Sep 2022 08:24
Letzte Änderung:19 Okt 2023 12:50

Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags

Blättern
Suchen
Hilfe & Kontakt
Informationen
electronic library verwendet EPrints 3.3.12
Gestaltung Webseite und Datenbank: Copyright © Deutsches Zentrum für Luft- und Raumfahrt (DLR). Alle Rechte vorbehalten.