de Graaff, Thies und Ribeiro de Menezes, Arthur (2022) Capsule Networks for Hierarchical Novelty Detection in Object Classification. In: 2022 IEEE Intelligent Vehicles Symposium, IV 2022, Seiten 1795-1800. Institute of Electrical and Electronics Engineers. 2022 IEEE Intelligent Vehicles Symposium (IV), 2022-06-04 - 2022-06-09, Aachen, Deutschland. doi: 10.1109/IV51971.2022.9827249. ISBN 978-166548821-1.
PDF
- Nur DLR-intern zugänglich
740kB |
Offizielle URL: https://ieeexplore.ieee.org/document/9827249
Kurzfassung
Hierarchical Novelty Detection (HND) refers to assigning labels to objects in a hierarchical category space, where non-leaf labeling represents a novelty detection of that category. By labeling a novel instance in at least one abstract category, more informed decisions can be made by an automated driving (AD) function, resulting in a safer behavior in novel situations. Current approaches are mainly composed of different architectures based on Convolutional Neural Networks (CNNs). Capsule Networks (CNs) were introduced as an alternative to CNNs that expand their capacity in tasks that were previously challenging. We explore the hierarchical nature of CNs and propose a novel approach for hierarchical novelty detection using a unified CN architecture. As a proof-of-concept, we evaluate it on a novelty detection task based on the Fashion-MNIST dataset. We define a misclassification matrix for evaluation of the performance based on a semantically sensible scenario for this dataset. The results show that our method outperforms the main CNN-based methods in the current literature in this task while also giving more flexibility for task-specific tuning and has the potential to reach state-of-the-art status in more complex HND use cases within the AD domain.
elib-URL des Eintrags: | https://elib.dlr.de/188106/ | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Dokumentart: | Konferenzbeitrag (Vortrag) | ||||||||||||
Titel: | Capsule Networks for Hierarchical Novelty Detection in Object Classification | ||||||||||||
Autoren: |
| ||||||||||||
Datum: | 2022 | ||||||||||||
Erschienen in: | 2022 IEEE Intelligent Vehicles Symposium, IV 2022 | ||||||||||||
Referierte Publikation: | Ja | ||||||||||||
Open Access: | Nein | ||||||||||||
Gold Open Access: | Nein | ||||||||||||
In SCOPUS: | Ja | ||||||||||||
In ISI Web of Science: | Ja | ||||||||||||
DOI: | 10.1109/IV51971.2022.9827249 | ||||||||||||
Seitenbereich: | Seiten 1795-1800 | ||||||||||||
Verlag: | Institute of Electrical and Electronics Engineers | ||||||||||||
Name der Reihe: | 2022 IEEE Intelligent Vehicles Symposium (IV) | ||||||||||||
ISBN: | 978-166548821-1 | ||||||||||||
Status: | veröffentlicht | ||||||||||||
Stichwörter: | Hierarchical Novelty Detection, Object Classification, Capsule Networks | ||||||||||||
Veranstaltungstitel: | 2022 IEEE Intelligent Vehicles Symposium (IV) | ||||||||||||
Veranstaltungsort: | Aachen, Deutschland | ||||||||||||
Veranstaltungsart: | internationale Konferenz | ||||||||||||
Veranstaltungsbeginn: | 4 Juni 2022 | ||||||||||||
Veranstaltungsende: | 9 Juni 2022 | ||||||||||||
Veranstalter : | IEEE | ||||||||||||
HGF - Forschungsbereich: | Luftfahrt, Raumfahrt und Verkehr | ||||||||||||
HGF - Programm: | Verkehr | ||||||||||||
HGF - Programmthema: | keine Zuordnung | ||||||||||||
DLR - Schwerpunkt: | Verkehr | ||||||||||||
DLR - Forschungsgebiet: | V - keine Zuordnung | ||||||||||||
DLR - Teilgebiet (Projekt, Vorhaben): | V - keine Zuordnung | ||||||||||||
Standort: | Oldenburg | ||||||||||||
Institute & Einrichtungen: | Institut für Systems Engineering für zukünftige Mobilität > Systems Theory and Design | ||||||||||||
Hinterlegt von: | de Graaff, Thies | ||||||||||||
Hinterlegt am: | 05 Sep 2022 15:10 | ||||||||||||
Letzte Änderung: | 24 Apr 2024 20:49 |
Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags