elib
DLR-Header
DLR-Logo -> http://www.dlr.de
DLR Portal Home | Impressum | Datenschutz | Kontakt | English
Schriftgröße: [-] Text [+]

Aeroelastic Dynamic Stall Computations of a Double-Swept Blade in a Four-Bladed Rotor Configuration

Babij, Georg (2022) Aeroelastic Dynamic Stall Computations of a Double-Swept Blade in a Four-Bladed Rotor Configuration. In: 48th European Rotorcraft Forum, ERF 2022. 48th European Rotorcraft Forum, 2022-09-06 - 2022-09-08, Winterthur, Schweiz. ISBN 978-171387029-6.

Dieses Archiv kann nicht den Volltext zur Verfügung stellen.

Offizielle URL: https://www.rotorcraft-forum.eu/

Kurzfassung

Innovative helicopter rotor blades with a combined forward-backward double-sweep at the outer part of the blade enable a reduction in noise emission and enhance the overall performance of a rotor. In this context, the influence of the aeroelastic behaviour in connection with the dynamic stall phenomenon is of great importance. It is accompanied by large aerodynamic load peaks, primarily seen in the lift and the pitching moment, impacting the structural integrity of the blades and adjacent control components. Double-swept model rotor blades were developed and investigated experimentally at the DLR Goettingen regarding the dynamic stall behaviour in a four-bladed rotor configuration at the Rotor Test Facility Goettingen. Due to an axial inflow to the rotor disc a sinusoidal variation in pitch angle is introduced to trigger the dynamic stall behaviour once per revolution. The experimental investigations were accompanied by aeroelastic as well as purely aerodynamic numerical simulations which are the main focus in this study. In case of the aeroelastic simulations, a tight coupling scheme was implemented to perform the data exchange between the inhouse CFD solver TAU and the commercial software Simpack as solver for multibody systems with flexible bodies in each time step. Six test cases with a rotational frequency of 23.6 Hz are presented comprising three with solely collective pitch angle and three with a superposed cyclic variation in pitch angle in order to introduce and strengthen the dynamic stall behaviour stepwise for the investigated rotor configuration. As a result, differences arise in the aerodynamic loads between both blade modelling approaches. They are elaborated in order to draw conclusions about the dynamic stall behaviour under consideration of elasticity in the blade modelling.

elib-URL des Eintrags:https://elib.dlr.de/187984/
Dokumentart:Konferenzbeitrag (Vortrag)
Titel:Aeroelastic Dynamic Stall Computations of a Double-Swept Blade in a Four-Bladed Rotor Configuration
Autoren:
AutorenInstitution oder E-Mail-AdresseAutoren-ORCID-iDORCID Put Code
Babij, GeorgGeorg.Babij (at) dlr.deNICHT SPEZIFIZIERTNICHT SPEZIFIZIERT
Datum:2022
Erschienen in:48th European Rotorcraft Forum, ERF 2022
Referierte Publikation:Ja
Open Access:Nein
Gold Open Access:Nein
In SCOPUS:Ja
In ISI Web of Science:Nein
ISBN:978-171387029-6
Status:veröffentlicht
Stichwörter:Dynamic Stall, Flexible Multibody System, Computational Fluid Dynamics, Rotor Aeroelasticity
Veranstaltungstitel:48th European Rotorcraft Forum
Veranstaltungsort:Winterthur, Schweiz
Veranstaltungsart:internationale Konferenz
Veranstaltungsbeginn:6 September 2022
Veranstaltungsende:8 September 2022
Veranstalter :ZHAW Zurich University of Applied Sciences
HGF - Forschungsbereich:Luftfahrt, Raumfahrt und Verkehr
HGF - Programm:Luftfahrt
HGF - Programmthema:Effizientes Luftfahrzeug
DLR - Schwerpunkt:Luftfahrt
DLR - Forschungsgebiet:L EV - Effizientes Luftfahrzeug
DLR - Teilgebiet (Projekt, Vorhaben):L - Virtueller Hubschrauber und Validierung
Standort: Göttingen
Institute & Einrichtungen:Institut für Aeroelastik > Aeroelastische Simulation
Hinterlegt von: Babij, Georg
Hinterlegt am:25 Aug 2022 09:58
Letzte Änderung:24 Apr 2024 20:49

Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags

Blättern
Suchen
Hilfe & Kontakt
Informationen
electronic library verwendet EPrints 3.3.12
Gestaltung Webseite und Datenbank: Copyright © Deutsches Zentrum für Luft- und Raumfahrt (DLR). Alle Rechte vorbehalten.