Khurana, Parv und Jäckel, Florian und Grabe, Cornelia und Dwight, Richard P. (2022) Data-driven augmentation of a RANS turbulence model for Transonic Flow Prediction. In: 56th 3AF International Conference on Applied Aerodynamics 2022, Seiten 1-11. 56th 3AF International Conference on Applied Aerodynamics, 2022-03-28 - 2022-03-30, Toulouse, Frankreich.
|
PDF
- Nur DLR-intern zugänglich
607kB |
Offizielle URL: https://www.3af-aerodynamics.com/
Kurzfassung
Purpose: The paper aims to improve Reynolds-Averaged Navier Stokes (RANS) turbulence models using a datadriven approach based on machine learning. A special focus is put on determining the optimal input features used for the machine learning model. Methodology: The Field Inversion and Machine Learning (FIML) approach is applied to the negative Spalart-Allmaras turbulence model for transonic flows over an airfoil where shock-induced separation occurs. Feature selection methods are applied to the results of the field inversion to determine the optimal input features for the machine learning model. Findings: Optimal input features and a machine learning model are developed which improve the existing negative Spalart-Allmaras turbulence model with respect to shock-induced flow separation. Originality: A comprehensive workflow is demonstrated that yields insights on which input features and which machine learning model should be used in the context of the FIML approach
| elib-URL des Eintrags: | https://elib.dlr.de/187948/ | ||||||||||||||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Dokumentart: | Konferenzbeitrag (Vortrag) | ||||||||||||||||||||
| Titel: | Data-driven augmentation of a RANS turbulence model for Transonic Flow Prediction | ||||||||||||||||||||
| Autoren: |
| ||||||||||||||||||||
| Datum: | März 2022 | ||||||||||||||||||||
| Erschienen in: | 56th 3AF International Conference on Applied Aerodynamics 2022 | ||||||||||||||||||||
| Referierte Publikation: | Ja | ||||||||||||||||||||
| Open Access: | Nein | ||||||||||||||||||||
| Gold Open Access: | Nein | ||||||||||||||||||||
| In SCOPUS: | Nein | ||||||||||||||||||||
| In ISI Web of Science: | Nein | ||||||||||||||||||||
| Seitenbereich: | Seiten 1-11 | ||||||||||||||||||||
| Herausgeber: |
| ||||||||||||||||||||
| Status: | veröffentlicht | ||||||||||||||||||||
| Stichwörter: | RANS turbulence models, data-driven turbulence modeling, machine learning, feature selection, flow separation, transonic flows | ||||||||||||||||||||
| Veranstaltungstitel: | 56th 3AF International Conference on Applied Aerodynamics | ||||||||||||||||||||
| Veranstaltungsort: | Toulouse, Frankreich | ||||||||||||||||||||
| Veranstaltungsart: | internationale Konferenz | ||||||||||||||||||||
| Veranstaltungsbeginn: | 28 März 2022 | ||||||||||||||||||||
| Veranstaltungsende: | 30 März 2022 | ||||||||||||||||||||
| Veranstalter : | 3AF | ||||||||||||||||||||
| HGF - Forschungsbereich: | Luftfahrt, Raumfahrt und Verkehr | ||||||||||||||||||||
| HGF - Programm: | Luftfahrt | ||||||||||||||||||||
| HGF - Programmthema: | Effizientes Luftfahrzeug | ||||||||||||||||||||
| DLR - Schwerpunkt: | Luftfahrt | ||||||||||||||||||||
| DLR - Forschungsgebiet: | L EV - Effizientes Luftfahrzeug | ||||||||||||||||||||
| DLR - Teilgebiet (Projekt, Vorhaben): | L - Digitale Technologien | ||||||||||||||||||||
| Standort: | Göttingen | ||||||||||||||||||||
| Institute & Einrichtungen: | Institut für Aerodynamik und Strömungstechnik > CASE, GO | ||||||||||||||||||||
| Hinterlegt von: | Jäckel, Florian | ||||||||||||||||||||
| Hinterlegt am: | 19 Aug 2022 17:51 | ||||||||||||||||||||
| Letzte Änderung: | 24 Apr 2024 20:49 |
Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags